A performance and interpretability assessment of machine learning models for rainfall prediction in the Republic of Ireland

Menatallah Abdel Azeem, Soumyabrata Dev
{"title":"A performance and interpretability assessment of machine learning models for rainfall prediction in the Republic of Ireland","authors":"Menatallah Abdel Azeem,&nbsp;Soumyabrata Dev","doi":"10.1016/j.dajour.2024.100515","DOIUrl":null,"url":null,"abstract":"<div><p>Rainfall prediction significantly impacts agriculture, water reserves, and preparations for flooding conditions. This research examines the performance and interpretability of machine learning (ML) models for rainfall prediction in the Republic of Ireland. The study uses a brute force approach and the Leave One Feature Out (LOFO) methodology to evaluate model performance under highly correlated variables. Results reveal consistent performance across ML algorithms, with average Area Under the Curve Precision–Recall (AUC-PR) scores ranging from 0.987 to 1.000, with certain features such as atmospheric pressure and soil moisture deficits demonstrating significant influence on prediction outcomes.SHapley Additive exPlanations (SHAP) values provide insights into feature importance, reaffirming the significance of atmospheric pressure and soil moisture deficits in rainfall prediction. This study underscores the importance of feature selection and interpretability in enhancing the accuracy and usability of ML models for rainfall prediction in Ireland.</p></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"12 ","pages":"Article 100515"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277266222400119X/pdfft?md5=17b64197d5e0eb48c92141637414cbe4&pid=1-s2.0-S277266222400119X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277266222400119X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rainfall prediction significantly impacts agriculture, water reserves, and preparations for flooding conditions. This research examines the performance and interpretability of machine learning (ML) models for rainfall prediction in the Republic of Ireland. The study uses a brute force approach and the Leave One Feature Out (LOFO) methodology to evaluate model performance under highly correlated variables. Results reveal consistent performance across ML algorithms, with average Area Under the Curve Precision–Recall (AUC-PR) scores ranging from 0.987 to 1.000, with certain features such as atmospheric pressure and soil moisture deficits demonstrating significant influence on prediction outcomes.SHapley Additive exPlanations (SHAP) values provide insights into feature importance, reaffirming the significance of atmospheric pressure and soil moisture deficits in rainfall prediction. This study underscores the importance of feature selection and interpretability in enhancing the accuracy and usability of ML models for rainfall prediction in Ireland.

爱尔兰共和国降雨预测机器学习模型的性能和可解释性评估
降雨预测对农业、水资源储备和洪水条件下的准备工作有重大影响。本研究考察了爱尔兰共和国降雨预测机器学习(ML)模型的性能和可解释性。该研究采用蛮力法和 "忽略一个特征"(LOFO)方法来评估高度相关变量下的模型性能。结果表明,各种 ML 算法的性能一致,平均曲线下精度-召回面积(AUC-PR)得分从 0.987 到 1.000 不等,大气压力和土壤水分不足等某些特征对预测结果有显著影响。这项研究强调了特征选择和可解释性在提高爱尔兰降雨预测 ML 模型的准确性和可用性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信