Indentation of a stiff membrane on an incompressible elastic halfspace

IF 2.8 3区 工程技术 Q2 MECHANICS
M. Ciavarella , J.R. Barber
{"title":"Indentation of a stiff membrane on an incompressible elastic halfspace","authors":"M. Ciavarella ,&nbsp;J.R. Barber","doi":"10.1016/j.ijnonlinmec.2024.104886","DOIUrl":null,"url":null,"abstract":"<div><p>Indentation of a very stiff membrane (like graphene) on an incompressible elastic material has been suggested as a method to measure the elastic modulus of the membrane, but so far the method is less explored than that based on indentation of a free-standing membrane clamped on the outer boundary, which relies on analytical solutions. However, we analyse the problem rigorously with an energy minimization in the Rayleigh sense with a one term approximation of the vertical displacement, and show that in the fully non-linear regime, the load <span><math><mi>F</mi></math></span> has a single term solution increasing as the power 5/3 of the indentation <span><math><mi>Δ</mi></math></span>. The solution is corrected only in the prefactor by extensive FEM investigation using a concentrated load resulting finally in <span><math><mrow><mi>F</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>45</mn><mo>×</mo><mn>4</mn><mi>π</mi></mrow><mrow><msup><mrow><mfenced><mrow><mn>384</mn><mi>π</mi></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></mfrac><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msubsup><msubsup><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msubsup><msup><mrow><mi>Δ</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>3</mn></mrow></msup><msup><mrow><mi>h</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></math></span>, where <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is the substrate shear modulus, <span><math><mi>h</mi></math></span> the membrane thickness, and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> its elastic modulus. We also find the effect of a finite membrane outer radius analytically, so that this method is also based entirely on analytical solutions. Comparison with experimental results seems very promising.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104886"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020746224002518/pdfft?md5=0a86cdb514503e261f5e104685d836f2&pid=1-s2.0-S0020746224002518-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002518","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Indentation of a very stiff membrane (like graphene) on an incompressible elastic material has been suggested as a method to measure the elastic modulus of the membrane, but so far the method is less explored than that based on indentation of a free-standing membrane clamped on the outer boundary, which relies on analytical solutions. However, we analyse the problem rigorously with an energy minimization in the Rayleigh sense with a one term approximation of the vertical displacement, and show that in the fully non-linear regime, the load F has a single term solution increasing as the power 5/3 of the indentation Δ. The solution is corrected only in the prefactor by extensive FEM investigation using a concentrated load resulting finally in F=1.45×4π384π1/3μs2/3Em1/3Δ5/3h1/3, where μs is the substrate shear modulus, h the membrane thickness, and Em its elastic modulus. We also find the effect of a finite membrane outer radius analytically, so that this method is also based entirely on analytical solutions. Comparison with experimental results seems very promising.

不可压缩弹性半空间上的硬膜压痕
在不可压缩的弹性材料上对非常坚硬的膜(如石墨烯)进行压痕处理被认为是测量膜的弹性模量的一种方法,但到目前为止,这种方法的探索还不如对夹在外边界上的独立膜进行压痕处理的方法,因为后者依赖于分析解。不过,我们采用雷利意义上的能量最小化方法,以垂直位移的单项近似值对问题进行了严格分析,结果表明,在完全非线性状态下,载荷 F 的单项解随压痕 Δ 的 5/3 次方而增加。通过使用集中载荷进行广泛的有限元分析,仅对前因子进行修正,最终得出 F=1.45×4π384π1/3μs2/3Em1/3Δ5/3h1/3 的结果,其中 μs 为基体剪切模量,h 为薄膜厚度,Em 为弹性模量。我们还通过分析找到了有限膜外半径的影响,因此该方法也完全基于分析解法。与实验结果的比较似乎很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信