{"title":"Effect of relative phase of loose tie rods on nonlinear dynamic behavior of rod-fastening rotor-bearing-seal system","authors":"","doi":"10.1016/j.ijnonlinmec.2024.104888","DOIUrl":null,"url":null,"abstract":"<div><p>Loosening of multiple tie rods in a circumferential rod-fastening rotor caused by thermal deformation and centrifugal loads is very common in engineering. The relative position of loose tie rods in the circumferential direction will also have an important impact on rotor dynamics. The relevant research has not been done yet. In this paper, a contact model of the rough machined surface is firstly established by combining the probability functions describing rough surfaces and fractal contact theory of asperities, then the contact stiffness model between disks is established based on the contact model. Finally, the dynamic model of the circumferential rod-fastening rotor-bearing-seal system is established and solved. The effect of relative phase of loose tie rods on the nonlinear dynamic characteristics of rod-fastening rotor-bearing-sealing system is studied. It can be concluded that relative phase of the loose tie rod has an important influence on the frequency, bifurcation, and periodic motion of the rotor system. At lower speed, the anisotropy of contact stiffness caused by loose tie rods has little effect on the rotor trajectory, while the generalized bending moment has a greater influence on dynamics of the system. At higher speed, the anisotropy of contact stiffness has a great influence on the axis rail of the rod-fastening rotor.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002531","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Loosening of multiple tie rods in a circumferential rod-fastening rotor caused by thermal deformation and centrifugal loads is very common in engineering. The relative position of loose tie rods in the circumferential direction will also have an important impact on rotor dynamics. The relevant research has not been done yet. In this paper, a contact model of the rough machined surface is firstly established by combining the probability functions describing rough surfaces and fractal contact theory of asperities, then the contact stiffness model between disks is established based on the contact model. Finally, the dynamic model of the circumferential rod-fastening rotor-bearing-seal system is established and solved. The effect of relative phase of loose tie rods on the nonlinear dynamic characteristics of rod-fastening rotor-bearing-sealing system is studied. It can be concluded that relative phase of the loose tie rod has an important influence on the frequency, bifurcation, and periodic motion of the rotor system. At lower speed, the anisotropy of contact stiffness caused by loose tie rods has little effect on the rotor trajectory, while the generalized bending moment has a greater influence on dynamics of the system. At higher speed, the anisotropy of contact stiffness has a great influence on the axis rail of the rod-fastening rotor.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.