Device Simulation of 25.9% Efficient ZnO x N y ${\rm ZnO}_x{\rm N}_y$ /Si Tandem Solar Cell

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Ingvild Bergsbak, Ørnulf Nordseth, Kjetil K. Saxegaard, Vegard S. Olsen, Holger von Wenckstern, Kristin Bergum
{"title":"Device Simulation of 25.9% Efficient \n \n \n \n ZnO\n x\n \n \n N\n y\n \n \n ${\\rm ZnO}_x{\\rm N}_y$\n /Si Tandem Solar Cell","authors":"Ingvild Bergsbak,&nbsp;Ørnulf Nordseth,&nbsp;Kjetil K. Saxegaard,&nbsp;Vegard S. Olsen,&nbsp;Holger von Wenckstern,&nbsp;Kristin Bergum","doi":"10.1002/adts.202400252","DOIUrl":null,"url":null,"abstract":"<p>The novel, high electron mobility material <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> has been investigated theoretically as an absorber in a two-terminal tandem solar cell. In addition to its high mobility, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> can attain sufficiently low carrier concentration to enable <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mi>n</mi>\n </mrow>\n <annotation>$pn$</annotation>\n </semantics></math>-junctions, and has a tunable bandgap around the 1.7 eV range. It is therefore suitable for pairing with a Si-based bottom cell. In addition to the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> layer, the tandem cell consists of a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Cu</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n </mrow>\n <annotation>${\\rm Cu}_2{\\rm O}$</annotation>\n </semantics></math> emitter and a Si heterojunction bottom cell. A buffer layer is introduced between the emitter and absorber in the top cell to mediate a large valence band offset that resulted in a poor fill factor, <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mi>F</mi>\n </mrow>\n <annotation>$FF$</annotation>\n </semantics></math>. A <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> buffer layer bandgap of 1.5 eV gave the highest power conversion efficiency (PCE). The objective is to estimate the optimal performance of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> in a tandem solar cell. The dependence of current–voltage (<span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>–<span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>) characteristics on thickness, mobility and carrier concentration in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math> layer is evaluated, and found to yield maximum performance with 0.35 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mi>m</mi>\n </mrow>\n <annotation>$\\umu {\\rm m}$</annotation>\n </semantics></math>, 250 <span></span><math>\n <semantics>\n <msup>\n <mi>cm</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\rm cm}^2$</annotation>\n </semantics></math> Vs<sup>–1</sup> and <span></span><math>\n <semantics>\n <msup>\n <mn>10</mn>\n <mn>16</mn>\n </msup>\n <annotation>$10^{16}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <msup>\n <mi>cm</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <annotation>${\\rm cm}^{-3}$</annotation>\n </semantics></math>, respectively. Using these conditions, the <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>–<span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> parameters of the device under AM1.5 illumination are short circuit current density, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mrow>\n <mi>S</mi>\n <mi>C</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>17.76</mn>\n </mrow>\n <annotation>$J_{SC}=17.76$</annotation>\n </semantics></math> mA <span></span><math>\n <semantics>\n <msup>\n <mi>cm</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <annotation>${\\mathrm{cm}}^{-2}$</annotation>\n </semantics></math>, open circuit voltage, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mrow>\n <mi>O</mi>\n <mi>C</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>1.74</mn>\n </mrow>\n <annotation>$V_{OC}=1.74$</annotation>\n </semantics></math> V, <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mi>F</mi>\n <mo>=</mo>\n <mn>83.8</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$FF=83.8\\%$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>PCE</mi>\n <mspace></mspace>\n <mo>=</mo>\n <mn>25.9</mn>\n <mo>%</mo>\n </mrow>\n <annotation>${\\rm PCE}\\,=25.9\\%$</annotation>\n </semantics></math>. With this, it is reported on, to the best of the knowledge, the first device simulation based on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ZnO</mi>\n <mi>x</mi>\n </msub>\n <msub>\n <mi>N</mi>\n <mi>y</mi>\n </msub>\n </mrow>\n <annotation>${\\rm ZnO}_x{\\rm N}_y$</annotation>\n </semantics></math>.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adts.202400252","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adts.202400252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The novel, high electron mobility material ZnO x N y ${\rm ZnO}_x{\rm N}_y$ has been investigated theoretically as an absorber in a two-terminal tandem solar cell. In addition to its high mobility, ZnO x N y ${\rm ZnO}_x{\rm N}_y$ can attain sufficiently low carrier concentration to enable p n $pn$ -junctions, and has a tunable bandgap around the 1.7 eV range. It is therefore suitable for pairing with a Si-based bottom cell. In addition to the ZnO x N y ${\rm ZnO}_x{\rm N}_y$ layer, the tandem cell consists of a Cu 2 O ${\rm Cu}_2{\rm O}$ emitter and a Si heterojunction bottom cell. A buffer layer is introduced between the emitter and absorber in the top cell to mediate a large valence band offset that resulted in a poor fill factor, F F $FF$ . A ZnO x N y ${\rm ZnO}_x{\rm N}_y$ buffer layer bandgap of 1.5 eV gave the highest power conversion efficiency (PCE). The objective is to estimate the optimal performance of ZnO x N y ${\rm ZnO}_x{\rm N}_y$ in a tandem solar cell. The dependence of current–voltage ( J $J$ V $V$ ) characteristics on thickness, mobility and carrier concentration in the ZnO x N y ${\rm ZnO}_x{\rm N}_y$ layer is evaluated, and found to yield maximum performance with 0.35 μ m $\umu {\rm m}$ , 250 cm 2 ${\rm cm}^2$ Vs–1 and 10 16 $10^{16}$ cm 3 ${\rm cm}^{-3}$ , respectively. Using these conditions, the J $J$ V $V$ parameters of the device under AM1.5 illumination are short circuit current density, J S C = 17.76 $J_{SC}=17.76$ mA cm 2 ${\mathrm{cm}}^{-2}$ , open circuit voltage, V O C = 1.74 $V_{OC}=1.74$ V, F F = 83.8 % $FF=83.8\%$ and PCE = 25.9 % ${\rm PCE}\,=25.9\%$ . With this, it is reported on, to the best of the knowledge, the first device simulation based on ZnO x N y ${\rm ZnO}_x{\rm N}_y$ .

Abstract Image

Abstract Image

25.9% 高效 ZnOxNy/Si 串联太阳能电池的器件模拟
我们从理论上研究了新型高电子迁移率材料 ZnOxNy$\{rm ZnO}_x\{rm N}_y$,将其用作双端串联太阳能电池的吸收剂。除了高迁移率之外,ZnOxNy${rm ZnO}_x{rm N}_y$ 还能达到足够低的载流子浓度,从而实现 pn$pn$ 结,并且在 1.7 eV 范围内具有可调带隙。因此,它适合与硅基底部电池配对使用。除了 ZnOxNy${\rm ZnO}_x{\rm N}_y$ 层之外,串联电池还包括一个 Cu2O${\rm Cu}_2{\rm O}$ 发射器和一个硅异质结底部电池。在顶部电池的发射器和吸收器之间引入了缓冲层,以调节导致填充因子 FF$FF$ 较低的较大价带偏移。缓冲层带隙为 1.5 eV 的 ZnOxNy${rm ZnO}_x{rm N}_y$ 具有最高的功率转换效率 (PCE)。研究的目的是估算 ZnOxNy${rm ZnO}_x{rm N}_y$ 在串联太阳能电池中的最佳性能。评估了电流-电压(J$J$-V$V$)特性对 ZnOxNy${rm ZnO}_x{rm N}_y$ 层的厚度、迁移率和载流子浓度的依赖性,发现在 0.35 μm$umu {rm m}$、250 cm2${rm cm}^2$ Vs-1 和 1016$10^{16}$ cm-3${rm cm}^{-3}$条件下分别能产生最大性能。在这些条件下,该器件在 AM1.5 照明下的 J$J$-V$V$ 参数为:短路电流密度 JSC=17.76$J_{SC}=17.76$ mA cm-2$\{mathrm{cm}}^{-2}$;开路电压 VOC=1.74$V_{OC}=1.74$ V;FF=83.8%$FF=83.8/%$;PCE=25.9%${rm PCE}\,=25.9/%$。据悉,这是第一个基于 ZnOxNy${rm ZnO}_x{rm N}_y$ 的器件模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信