Device Simulation of 25.9% Efficient ZnOxNy/Si Tandem Solar Cell

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Ingvild Bergsbak, Ørnulf Nordseth, Kjetil K. Saxegaard, Vegard S. Olsen, Holger von Wenckstern, Kristin Bergum
{"title":"Device Simulation of 25.9% Efficient ZnOxNy/Si Tandem Solar Cell","authors":"Ingvild Bergsbak, Ørnulf Nordseth, Kjetil K. Saxegaard, Vegard S. Olsen, Holger von Wenckstern, Kristin Bergum","doi":"10.1002/adts.202400252","DOIUrl":null,"url":null,"abstract":"The novel, high electron mobility material <span data-altimg=\"/cms/asset/e9f5e09d-2293-46b4-99bb-9e7dbfc6e7db/adts202400252-math-0002.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0002\" display=\"inline\" location=\"graphic/adts202400252-math-0002.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>ZnO</mi>\n<mi>x</mi>\n</msub>\n<msub>\n<mi mathvariant=\"normal\">N</mi>\n<mi>y</mi>\n</msub>\n</mrow>\n${\\rm ZnO}_x{\\rm N}_y$</annotation>\n</semantics></math> has been investigated theoretically as an absorber in a two-terminal tandem solar cell. In addition to its high mobility, <span data-altimg=\"/cms/asset/92481995-6b5b-42a5-bffc-7cde7bb07e09/adts202400252-math-0003.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0003\" display=\"inline\" location=\"graphic/adts202400252-math-0003.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>ZnO</mi>\n<mi>x</mi>\n</msub>\n<msub>\n<mi mathvariant=\"normal\">N</mi>\n<mi>y</mi>\n</msub>\n</mrow>\n${\\rm ZnO}_x{\\rm N}_y$</annotation>\n</semantics></math> can attain sufficiently low carrier concentration to enable <span data-altimg=\"/cms/asset/7afa9962-d1a2-47e8-a660-f8eeba3b2c78/adts202400252-math-0004.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0004\" display=\"inline\" location=\"graphic/adts202400252-math-0004.png\">\n<semantics>\n<mrow>\n<mi>p</mi>\n<mi>n</mi>\n</mrow>\n$pn$</annotation>\n</semantics></math>-junctions, and has a tunable bandgap around the 1.7 eV range. It is therefore suitable for pairing with a Si-based bottom cell. In addition to the <span data-altimg=\"/cms/asset/8c93e691-b80b-4b6c-8d9f-ba3ea7f78a58/adts202400252-math-0005.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0005\" display=\"inline\" location=\"graphic/adts202400252-math-0005.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>ZnO</mi>\n<mi>x</mi>\n</msub>\n<msub>\n<mi mathvariant=\"normal\">N</mi>\n<mi>y</mi>\n</msub>\n</mrow>\n${\\rm ZnO}_x{\\rm N}_y$</annotation>\n</semantics></math> layer, the tandem cell consists of a <span data-altimg=\"/cms/asset/20c6372d-403f-4fd9-812b-4fb2557130a0/adts202400252-math-0006.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0006\" display=\"inline\" location=\"graphic/adts202400252-math-0006.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>Cu</mi>\n<mn>2</mn>\n</msub>\n<mi mathvariant=\"normal\">O</mi>\n</mrow>\n${\\rm Cu}_2{\\rm O}$</annotation>\n</semantics></math> emitter and a Si heterojunction bottom cell. A buffer layer is introduced between the emitter and absorber in the top cell to mediate a large valence band offset that resulted in a poor fill factor, <span data-altimg=\"/cms/asset/19c2e8e5-6113-4acd-b628-597a9be720bb/adts202400252-math-0007.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0007\" display=\"inline\" location=\"graphic/adts202400252-math-0007.png\">\n<semantics>\n<mrow>\n<mi>F</mi>\n<mi>F</mi>\n</mrow>\n$FF$</annotation>\n</semantics></math>. A <span data-altimg=\"/cms/asset/b0b1da9a-66e1-4a1c-a01d-78fddd8cc1c3/adts202400252-math-0008.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0008\" display=\"inline\" location=\"graphic/adts202400252-math-0008.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>ZnO</mi>\n<mi>x</mi>\n</msub>\n<msub>\n<mi mathvariant=\"normal\">N</mi>\n<mi>y</mi>\n</msub>\n</mrow>\n${\\rm ZnO}_x{\\rm N}_y$</annotation>\n</semantics></math> buffer layer bandgap of 1.5 eV gave the highest power conversion efficiency (PCE). The objective is to estimate the optimal performance of <span data-altimg=\"/cms/asset/8eb1d06b-cd84-4f55-86f3-6eaebd089bf2/adts202400252-math-0009.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0009\" display=\"inline\" location=\"graphic/adts202400252-math-0009.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>ZnO</mi>\n<mi>x</mi>\n</msub>\n<msub>\n<mi mathvariant=\"normal\">N</mi>\n<mi>y</mi>\n</msub>\n</mrow>\n${\\rm ZnO}_x{\\rm N}_y$</annotation>\n</semantics></math> in a tandem solar cell. The dependence of current–voltage (<span data-altimg=\"/cms/asset/722003c4-effc-426f-ae40-10e285397ceb/adts202400252-math-0010.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0010\" display=\"inline\" location=\"graphic/adts202400252-math-0010.png\">\n<semantics>\n<mi>J</mi>\n$J$</annotation>\n</semantics></math>–<span data-altimg=\"/cms/asset/3869e20b-99ce-4407-97db-4688b7403cc0/adts202400252-math-0011.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0011\" display=\"inline\" location=\"graphic/adts202400252-math-0011.png\">\n<semantics>\n<mi>V</mi>\n$V$</annotation>\n</semantics></math>) characteristics on thickness, mobility and carrier concentration in the <span data-altimg=\"/cms/asset/bd8a2d56-cf0b-4d3a-a66f-bafe0856a2db/adts202400252-math-0012.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0012\" display=\"inline\" location=\"graphic/adts202400252-math-0012.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>ZnO</mi>\n<mi>x</mi>\n</msub>\n<msub>\n<mi mathvariant=\"normal\">N</mi>\n<mi>y</mi>\n</msub>\n</mrow>\n${\\rm ZnO}_x{\\rm N}_y$</annotation>\n</semantics></math> layer is evaluated, and found to yield maximum performance with 0.35 <span data-altimg=\"/cms/asset/37164afb-079c-4113-b326-8787cea7128d/adts202400252-math-0013.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0013\" display=\"inline\" location=\"graphic/adts202400252-math-0013.png\">\n<semantics>\n<mrow>\n<mi>μ</mi>\n<mi mathvariant=\"normal\">m</mi>\n</mrow>\n$\\umu {\\rm m}$</annotation>\n</semantics></math>, 250 <span data-altimg=\"/cms/asset/ee960589-d017-4077-9671-ce1d64b08614/adts202400252-math-0014.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0014\" display=\"inline\" location=\"graphic/adts202400252-math-0014.png\">\n<semantics>\n<msup>\n<mi>cm</mi>\n<mn>2</mn>\n</msup>\n${\\rm cm}^2$</annotation>\n</semantics></math> Vs<sup>–1</sup> and <span data-altimg=\"/cms/asset/a637b386-7f7d-482c-96de-d1b9cd6505ba/adts202400252-math-0015.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0015\" display=\"inline\" location=\"graphic/adts202400252-math-0015.png\">\n<semantics>\n<msup>\n<mn>10</mn>\n<mn>16</mn>\n</msup>\n$10^{16}$</annotation>\n</semantics></math> <span data-altimg=\"/cms/asset/6d4f2e78-a5b3-496c-89fe-4ea77ad4c691/adts202400252-math-0016.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0016\" display=\"inline\" location=\"graphic/adts202400252-math-0016.png\">\n<semantics>\n<msup>\n<mi>cm</mi>\n<mrow>\n<mo>−</mo>\n<mn>3</mn>\n</mrow>\n</msup>\n${\\rm cm}^{-3}$</annotation>\n</semantics></math>, respectively. Using these conditions, the <span data-altimg=\"/cms/asset/7af165bc-f850-419f-8c65-79b389cc14bd/adts202400252-math-0017.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0017\" display=\"inline\" location=\"graphic/adts202400252-math-0017.png\">\n<semantics>\n<mi>J</mi>\n$J$</annotation>\n</semantics></math>–<span data-altimg=\"/cms/asset/034ed1fb-0ce1-46c1-81fc-ae92a8cb0e69/adts202400252-math-0018.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0018\" display=\"inline\" location=\"graphic/adts202400252-math-0018.png\">\n<semantics>\n<mi>V</mi>\n$V$</annotation>\n</semantics></math> parameters of the device under AM1.5 illumination are short circuit current density, <span data-altimg=\"/cms/asset/cbce6df0-cce2-4df9-ba20-20b3e9237b8a/adts202400252-math-0019.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0019\" display=\"inline\" location=\"graphic/adts202400252-math-0019.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>J</mi>\n<mrow>\n<mi>S</mi>\n<mi>C</mi>\n</mrow>\n</msub>\n<mo>=</mo>\n<mn>17.76</mn>\n</mrow>\n$J_{SC}=17.76$</annotation>\n</semantics></math> mA <span data-altimg=\"/cms/asset/163d9aaa-4e44-42bb-afe0-3778783538bd/adts202400252-math-0020.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0020\" display=\"inline\" location=\"graphic/adts202400252-math-0020.png\">\n<semantics>\n<msup>\n<mi>cm</mi>\n<mrow>\n<mo>−</mo>\n<mn>2</mn>\n</mrow>\n</msup>\n${\\mathrm{cm}}^{-2}$</annotation>\n</semantics></math>, open circuit voltage, <span data-altimg=\"/cms/asset/73d36f1b-a8bc-461b-ad44-e2457660291e/adts202400252-math-0021.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0021\" display=\"inline\" location=\"graphic/adts202400252-math-0021.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>V</mi>\n<mrow>\n<mi>O</mi>\n<mi>C</mi>\n</mrow>\n</msub>\n<mo>=</mo>\n<mn>1.74</mn>\n</mrow>\n$V_{OC}=1.74$</annotation>\n</semantics></math> V, <span data-altimg=\"/cms/asset/2abd71a7-d106-4375-acbf-c6935fee4eca/adts202400252-math-0022.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0022\" display=\"inline\" location=\"graphic/adts202400252-math-0022.png\">\n<semantics>\n<mrow>\n<mi>F</mi>\n<mi>F</mi>\n<mo>=</mo>\n<mn>83.8</mn>\n<mo>%</mo>\n</mrow>\n$FF=83.8\\%$</annotation>\n</semantics></math> and <span data-altimg=\"/cms/asset/c785d284-2fc3-418e-ada6-022c49f68071/adts202400252-math-0023.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0023\" display=\"inline\" location=\"graphic/adts202400252-math-0023.png\">\n<semantics>\n<mrow>\n<mi>PCE</mi>\n<mspace width=\"0.16em\"></mspace>\n<mo>=</mo>\n<mn>25.9</mn>\n<mo>%</mo>\n</mrow>\n${\\rm PCE}\\,=25.9\\%$</annotation>\n</semantics></math>. With this, it is reported on, to the best of the knowledge, the first device simulation based on <span data-altimg=\"/cms/asset/b7da293c-62f6-4c17-8172-de4130c91745/adts202400252-math-0024.png\"></span><math altimg=\"urn:x-wiley:25130390:media:adts202400252:adts202400252-math-0024\" display=\"inline\" location=\"graphic/adts202400252-math-0024.png\">\n<semantics>\n<mrow>\n<msub>\n<mi>ZnO</mi>\n<mi>x</mi>\n</msub>\n<msub>\n<mi mathvariant=\"normal\">N</mi>\n<mi>y</mi>\n</msub>\n</mrow>\n${\\rm ZnO}_x{\\rm N}_y$</annotation>\n</semantics></math>.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400252","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The novel, high electron mobility material ZnO x N y ${\rm ZnO}_x{\rm N}_y$ has been investigated theoretically as an absorber in a two-terminal tandem solar cell. In addition to its high mobility, ZnO x N y ${\rm ZnO}_x{\rm N}_y$ can attain sufficiently low carrier concentration to enable p n $pn$ -junctions, and has a tunable bandgap around the 1.7 eV range. It is therefore suitable for pairing with a Si-based bottom cell. In addition to the ZnO x N y ${\rm ZnO}_x{\rm N}_y$ layer, the tandem cell consists of a Cu 2 O ${\rm Cu}_2{\rm O}$ emitter and a Si heterojunction bottom cell. A buffer layer is introduced between the emitter and absorber in the top cell to mediate a large valence band offset that resulted in a poor fill factor, F F $FF$ . A ZnO x N y ${\rm ZnO}_x{\rm N}_y$ buffer layer bandgap of 1.5 eV gave the highest power conversion efficiency (PCE). The objective is to estimate the optimal performance of ZnO x N y ${\rm ZnO}_x{\rm N}_y$ in a tandem solar cell. The dependence of current–voltage ( J $J$ V $V$ ) characteristics on thickness, mobility and carrier concentration in the ZnO x N y ${\rm ZnO}_x{\rm N}_y$ layer is evaluated, and found to yield maximum performance with 0.35 μ m $\umu {\rm m}$ , 250 cm 2 ${\rm cm}^2$ Vs–1 and 10 16 $10^{16}$ cm 3 ${\rm cm}^{-3}$ , respectively. Using these conditions, the J $J$ V $V$ parameters of the device under AM1.5 illumination are short circuit current density, J S C = 17.76 $J_{SC}=17.76$ mA cm 2 ${\mathrm{cm}}^{-2}$ , open circuit voltage, V O C = 1.74 $V_{OC}=1.74$ V, F F = 83.8 % $FF=83.8\%$ and PCE = 25.9 % ${\rm PCE}\,=25.9\%$ . With this, it is reported on, to the best of the knowledge, the first device simulation based on ZnO x N y ${\rm ZnO}_x{\rm N}_y$ .

Abstract Image

25.9% 高效 ZnOxNy/Si 串联太阳能电池的器件模拟
我们从理论上研究了新型高电子迁移率材料 ZnOxNy$\{rm ZnO}_x\{rm N}_y$,将其用作双端串联太阳能电池的吸收剂。除了高迁移率之外,ZnOxNy${rm ZnO}_x{rm N}_y$ 还能达到足够低的载流子浓度,从而实现 pn$pn$ 结,并且在 1.7 eV 范围内具有可调带隙。因此,它适合与硅基底部电池配对使用。除了 ZnOxNy${\rm ZnO}_x{\rm N}_y$ 层之外,串联电池还包括一个 Cu2O${\rm Cu}_2{\rm O}$ 发射器和一个硅异质结底部电池。在顶部电池的发射器和吸收器之间引入了缓冲层,以调节导致填充因子 FF$FF$ 较低的较大价带偏移。缓冲层带隙为 1.5 eV 的 ZnOxNy${rm ZnO}_x{rm N}_y$ 具有最高的功率转换效率 (PCE)。研究的目的是估算 ZnOxNy${rm ZnO}_x{rm N}_y$ 在串联太阳能电池中的最佳性能。评估了电流-电压(J$J$-V$V$)特性对 ZnOxNy${rm ZnO}_x{rm N}_y$ 层的厚度、迁移率和载流子浓度的依赖性,发现在 0.35 μm$umu {rm m}$、250 cm2${rm cm}^2$ Vs-1 和 1016$10^{16}$ cm-3${rm cm}^{-3}$条件下分别能产生最大性能。在这些条件下,该器件在 AM1.5 照明下的 J$J$-V$V$ 参数为:短路电流密度 JSC=17.76$J_{SC}=17.76$ mA cm-2$\{mathrm{cm}}^{-2}$;开路电压 VOC=1.74$V_{OC}=1.74$ V;FF=83.8%$FF=83.8/%$;PCE=25.9%${rm PCE}\,=25.9/%$。据悉,这是第一个基于 ZnOxNy${rm ZnO}_x{rm N}_y$ 的器件模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信