Learning a Non-Locally Regularized Convolutional Sparse Representation for Joint Chromatic and Polarimetric Demosaicking

Yidong Luo;Junchao Zhang;Jianbo Shao;Jiandong Tian;Jiayi Ma
{"title":"Learning a Non-Locally Regularized Convolutional Sparse Representation for Joint Chromatic and Polarimetric Demosaicking","authors":"Yidong Luo;Junchao Zhang;Jianbo Shao;Jiandong Tian;Jiayi Ma","doi":"10.1109/TIP.2024.3451693","DOIUrl":null,"url":null,"abstract":"Division of focal plane color polarization camera becomes the mainstream in polarimetric imaging for it directly captures color polarization mosaic image by one snapshot, so image demosaicking is an essential task. Current color polarization demosaicking (CPDM) methods are prone to unsatisfied results since it’s difficult to recover missed 15 or 14 pixels out of 16 pixels in color polarization mosaic images. To address this problem, a non-locally regularized convolutional sparse regularization model, which is advantaged in denoising and edge maintaining, is proposed to recall more information for CPDM task, and the CPDM task is transformed into an energy function to be solved by ADMM optimization. Finally, the optimal model generates informative and clear results. The experimental results, including reconstructed synthetic and real-world scenes, demonstrate that our proposed method outperforms the current state-of-the-art methods in terms of quantitative measurements and visual quality. The source code is available at \n<uri>https://github.com/roydon-luo/NLCSR-CPDM</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5029-5044"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670059/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Division of focal plane color polarization camera becomes the mainstream in polarimetric imaging for it directly captures color polarization mosaic image by one snapshot, so image demosaicking is an essential task. Current color polarization demosaicking (CPDM) methods are prone to unsatisfied results since it’s difficult to recover missed 15 or 14 pixels out of 16 pixels in color polarization mosaic images. To address this problem, a non-locally regularized convolutional sparse regularization model, which is advantaged in denoising and edge maintaining, is proposed to recall more information for CPDM task, and the CPDM task is transformed into an energy function to be solved by ADMM optimization. Finally, the optimal model generates informative and clear results. The experimental results, including reconstructed synthetic and real-world scenes, demonstrate that our proposed method outperforms the current state-of-the-art methods in terms of quantitative measurements and visual quality. The source code is available at https://github.com/roydon-luo/NLCSR-CPDM .
为联合色度和偏振解马赛克学习非局部正则化卷积稀疏表示法
分焦平面彩色偏振相机是偏振成像技术的主流,因为它能通过一次快照直接捕捉彩色偏振镶嵌图像,因此图像去马赛克是一项必不可少的任务。目前的彩色偏振去马赛克(CPDM)方法很难恢复彩色偏振马赛克图像 16 个像素中遗漏的 15 或 14 个像素,因此容易产生不理想的结果。为解决这一问题,我们提出了一种在去噪和边缘保持方面具有优势的非局部正则化卷积稀疏正则化模型,为 CPDM 任务调用更多信息,并将 CPDM 任务转化为能量函数,用 ADMM 优化法求解。最后,最优模型产生了信息丰富且清晰的结果。实验结果(包括重建的合成场景和真实场景)表明,我们提出的方法在定量测量和视觉质量方面优于目前最先进的方法。源代码见 https://github.com/roydon-luo/NLCSR-CPDM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信