{"title":"Double helix level scheme of 171Yb nucleus","authors":"N. Nica","doi":"10.1016/j.adt.2024.101682","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the principles underlying high-spin level schemes, using the case of <sup>171</sup>Yb as an example. We first introduce the least-squares fit of the experimental <span><math><mi>γ</mi></math></span>-ray energy bands vs spin as a family of straight lines, <span><math><mrow><mn>2</mn><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>I</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. The fit captures the average rotational phenomenology of all the bands. The constant <span><math><mrow><mn>2</mn><mi>c</mi></mrow></math></span> average slope is the inverse of the effective moment of inertia <span><math><mrow><msubsup><mrow><mi>ℑ</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><msup><mrow><mo>ħ</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mi>c</mi></mrow></math></span>. The inclusion of the additional integer parameter <span><math><mi>k</mi></math></span> transforms the Bohr–Mottelson ideal rotor into a double helix structure that can accommodate all combinations of spin, parity, and signature quantum numbers for the rotational levels. Finally, the experimental <span><math><mi>γ</mi></math></span>-ray energies can be parametrized as <span><math><mrow><mn>2</mn><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mi>I</mi><mo>+</mo><mi>k</mi><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, where the additional integer <span><math><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> contains the deviations of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi></mrow></msub></math></span> values from the fit lines and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub></math></span> is the band inertial parameter, which determines the band moments of inertia, <span><math><mrow><msubsup><mrow><mi>ℑ</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><msup><mrow><mo>ħ</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub></mrow></math></span>. The new <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>2</mn><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mi>I</mi><mo>+</mo><mi>k</mi><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> parametrization leads to a natural <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> representation of the <sup>171</sup>Yb rotational bands as paths on the double helix structure. These paths contain all information of both the macroscopic and microscopic motions of <sup>171</sup>Yb nucleus.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"160 ","pages":"Article 101682"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Data and Nuclear Data Tables","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0092640X24000470","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit the principles underlying high-spin level schemes, using the case of 171Yb as an example. We first introduce the least-squares fit of the experimental -ray energy bands vs spin as a family of straight lines, . The fit captures the average rotational phenomenology of all the bands. The constant average slope is the inverse of the effective moment of inertia . The inclusion of the additional integer parameter transforms the Bohr–Mottelson ideal rotor into a double helix structure that can accommodate all combinations of spin, parity, and signature quantum numbers for the rotational levels. Finally, the experimental -ray energies can be parametrized as , where the additional integer contains the deviations of values from the fit lines and is the band inertial parameter, which determines the band moments of inertia, . The new parametrization leads to a natural representation of the 171Yb rotational bands as paths on the double helix structure. These paths contain all information of both the macroscopic and microscopic motions of 171Yb nucleus.
期刊介绍:
Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive ... click here for full Aims & Scope
Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive and comprehensive compilations of experimental and theoretical results are featured.