Wave2Graph: Integrating spectral features and correlations for graph-based learning in sound waves

Van-Truong Hoang , Khanh-Tung Tran , Xuan-Son Vu , Duy-Khuong Nguyen , Monowar Bhuyan , Hoang D. Nguyen
{"title":"Wave2Graph: Integrating spectral features and correlations for graph-based learning in sound waves","authors":"Van-Truong Hoang ,&nbsp;Khanh-Tung Tran ,&nbsp;Xuan-Son Vu ,&nbsp;Duy-Khuong Nguyen ,&nbsp;Monowar Bhuyan ,&nbsp;Hoang D. Nguyen","doi":"10.1016/j.aiopen.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates a novel graph-based representation of sound waves inspired by the physical phenomenon of correlated vibrations. We propose a Wave2Graph framework for integrating multiple acoustic representations, including the spectrum of frequencies and correlations, into various neural computing architectures to achieve new state-of-the-art performances in sound classification. The capability and reliability of our end-to-end framework are evidently demonstrated in voice pathology for low-cost and non-invasive mass-screening of medical conditions, including respiratory illnesses and Alzheimer’s Dementia. We conduct extensive experiments on multiple public benchmark datasets (ICBHI and ADReSSo) and our real-world dataset (IJSound: Respiratory disease detection using coughs and breaths). Wave2Graph framework consistently outperforms previous state-of-the-art methods with a large magnitude, up to 7.65% improvement, promising the usefulness of graph-based representation in signal processing and machine learning.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"5 ","pages":"Pages 115-125"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651024000147/pdfft?md5=39354e1c8fc8f37b3f91eb3d652b379f&pid=1-s2.0-S2666651024000147-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651024000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a novel graph-based representation of sound waves inspired by the physical phenomenon of correlated vibrations. We propose a Wave2Graph framework for integrating multiple acoustic representations, including the spectrum of frequencies and correlations, into various neural computing architectures to achieve new state-of-the-art performances in sound classification. The capability and reliability of our end-to-end framework are evidently demonstrated in voice pathology for low-cost and non-invasive mass-screening of medical conditions, including respiratory illnesses and Alzheimer’s Dementia. We conduct extensive experiments on multiple public benchmark datasets (ICBHI and ADReSSo) and our real-world dataset (IJSound: Respiratory disease detection using coughs and breaths). Wave2Graph framework consistently outperforms previous state-of-the-art methods with a large magnitude, up to 7.65% improvement, promising the usefulness of graph-based representation in signal processing and machine learning.

Wave2Graph:整合频谱特征和相关性,实现基于图谱的声波学习
本文受相关振动物理现象的启发,研究了一种基于图形的新型声波表示法。我们提出了一个 Wave2Graph 框架,用于将包括频谱和相关性在内的多种声学表示法集成到各种神经计算架构中,从而在声音分类方面实现最先进的新性能。我们的端到端框架的能力和可靠性在语音病理学中得到了明显的体现,可用于呼吸系统疾病和阿尔茨海默氏症痴呆症等疾病的低成本、无创大规模筛查。我们在多个公共基准数据集(ICBHI 和 ADReSSo)和真实世界数据集(IJSound:利用咳嗽和呼吸检测呼吸疾病)上进行了广泛的实验。Wave2Graph 框架的表现始终优于之前的先进方法,最高提升幅度达 7.65%,证明了基于图的表示法在信号处理和机器学习中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信