Tathagata Chakraborty, Dharmendra Kr. Pandey, Raghav Mehra, Parikshit Parasher, Deepak Putrevu, V.M. Ramanujam, Nilesh M. Desai
{"title":"Polarimetric characterization of Chandrayaan-3 landing site near lunar south pole using high resolution Chandrayaan-2 DFSAR data","authors":"Tathagata Chakraborty, Dharmendra Kr. Pandey, Raghav Mehra, Parikshit Parasher, Deepak Putrevu, V.M. Ramanujam, Nilesh M. Desai","doi":"10.1016/j.pss.2024.105956","DOIUrl":null,"url":null,"abstract":"<div><p>The Chandrayaan-3 (CH3) Vikram lander presents an unique opportunity to study the radar scattering behavior of the landing site as well as human-made dihedral structure on the lunar surface. This opportunity is made possible by the Dual-Frequency Synthetic Aperture Radar (DFSAR) sensor onboard the Chandrayaan-2 orbiter, which has the highest resolution and polarimetric capabilities compared to any planetary SAR sensor. To explore this, we utilized DFSAR to capture high-resolution images of the CH3 landing site during pre-landing and post-landing condition, with a pixel spacing as fine as 1 m, in a hybrid-pol mode. The landing site exhibits dominant volume and even-bounce radar scattering behavior similar to an ideal dihedral geometry. Furthermore, we observed an exceptionally high Circular Polarization Ratio value at the landing site (1.99 ± 0.30), a rarity among natural features on the lunar surface. Besides, the landing site is characterized by enhanced average dielectric constant value (5.76 ± 3.11). The post-landing DFSAR image reveals a 177 m<sup>2</sup> area, surrounding the CH3 landing location, characterized by high CPR and elevated even bounce and volume scattering. The drastic enhancement of the average CPR value (7-times), dielectric value (2-times), even bounce and volume scattering in the landing site, in comparison with the pre-landing DFSAR observation, is due to presence of lander module and disturbance in the regolith structure in the landing area. The polarimetric characteristics of the landing site distinguish it from the major natural features on the lunar surface, such as regolith, debris flow, and impact ejecta. This investigation is of utmost importance as it emphasizes the effectiveness of high-resolution DFSAR acquisitions for evaluating the polarimetric behavior of small-scale features, which can be invaluable for characterizing landing sites in upcoming missions.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"251 ","pages":"Article 105956"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003206332400120X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Chandrayaan-3 (CH3) Vikram lander presents an unique opportunity to study the radar scattering behavior of the landing site as well as human-made dihedral structure on the lunar surface. This opportunity is made possible by the Dual-Frequency Synthetic Aperture Radar (DFSAR) sensor onboard the Chandrayaan-2 orbiter, which has the highest resolution and polarimetric capabilities compared to any planetary SAR sensor. To explore this, we utilized DFSAR to capture high-resolution images of the CH3 landing site during pre-landing and post-landing condition, with a pixel spacing as fine as 1 m, in a hybrid-pol mode. The landing site exhibits dominant volume and even-bounce radar scattering behavior similar to an ideal dihedral geometry. Furthermore, we observed an exceptionally high Circular Polarization Ratio value at the landing site (1.99 ± 0.30), a rarity among natural features on the lunar surface. Besides, the landing site is characterized by enhanced average dielectric constant value (5.76 ± 3.11). The post-landing DFSAR image reveals a 177 m2 area, surrounding the CH3 landing location, characterized by high CPR and elevated even bounce and volume scattering. The drastic enhancement of the average CPR value (7-times), dielectric value (2-times), even bounce and volume scattering in the landing site, in comparison with the pre-landing DFSAR observation, is due to presence of lander module and disturbance in the regolith structure in the landing area. The polarimetric characteristics of the landing site distinguish it from the major natural features on the lunar surface, such as regolith, debris flow, and impact ejecta. This investigation is of utmost importance as it emphasizes the effectiveness of high-resolution DFSAR acquisitions for evaluating the polarimetric behavior of small-scale features, which can be invaluable for characterizing landing sites in upcoming missions.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research