Integrating supervised and unsupervised learning approaches to unveil critical process inputs

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Paris Papavasileiou , Dimitrios G. Giovanis , Gabriele Pozzetti , Martin Kathrein , Christoph Czettl , Ioannis G. Kevrekidis , Andreas G. Boudouvis , Stéphane P.A. Bordas , Eleni D. Koronaki
{"title":"Integrating supervised and unsupervised learning approaches to unveil critical process inputs","authors":"Paris Papavasileiou ,&nbsp;Dimitrios G. Giovanis ,&nbsp;Gabriele Pozzetti ,&nbsp;Martin Kathrein ,&nbsp;Christoph Czettl ,&nbsp;Ioannis G. Kevrekidis ,&nbsp;Andreas G. Boudouvis ,&nbsp;Stéphane P.A. Bordas ,&nbsp;Eleni D. Koronaki","doi":"10.1016/j.compchemeng.2024.108857","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a machine learning framework tailored to large-scale industrial processes characterized by a plethora of numerical and categorical inputs. The framework aims to (i) discern critical parameters that influence the output and (ii) generate accurate out-of-sample qualitative and quantitative predictions of production outcomes. Specifically, we address the pivotal question of the significance of each input in shaping the process outcome, using an industrial Chemical Vapor Deposition (CVD) process as an example. The initial objective involves merging subject matter expertise and clustering techniques exclusively on the process output, here, coating thickness measurements at various positions in the reactor. This approach identifies groups of production runs that share similar qualitative characteristics, such as film mean thickness and standard deviation. In particular, the differences of the outcomes represented by the different clusters can be attributed to differences in specific inputs, indicating that these inputs are potentially critical to the production outcome. Shapley value analysis corroborates the formed hypotheses. Leveraging this insight, we subsequently implement supervised classification and regression methods using the identified critical process inputs. The proposed methodology proves to be valuable in scenarios with a multitude of inputs and insufficient data for the direct application of deep learning techniques, providing meaningful insights into the underlying processes.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108857"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424002758/pdfft?md5=5b97cf2052fa37b1ae7b0760796c20ca&pid=1-s2.0-S0098135424002758-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002758","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a machine learning framework tailored to large-scale industrial processes characterized by a plethora of numerical and categorical inputs. The framework aims to (i) discern critical parameters that influence the output and (ii) generate accurate out-of-sample qualitative and quantitative predictions of production outcomes. Specifically, we address the pivotal question of the significance of each input in shaping the process outcome, using an industrial Chemical Vapor Deposition (CVD) process as an example. The initial objective involves merging subject matter expertise and clustering techniques exclusively on the process output, here, coating thickness measurements at various positions in the reactor. This approach identifies groups of production runs that share similar qualitative characteristics, such as film mean thickness and standard deviation. In particular, the differences of the outcomes represented by the different clusters can be attributed to differences in specific inputs, indicating that these inputs are potentially critical to the production outcome. Shapley value analysis corroborates the formed hypotheses. Leveraging this insight, we subsequently implement supervised classification and regression methods using the identified critical process inputs. The proposed methodology proves to be valuable in scenarios with a multitude of inputs and insufficient data for the direct application of deep learning techniques, providing meaningful insights into the underlying processes.

整合监督和非监督学习方法,揭示关键流程输入
本研究针对以大量数字和分类输入为特征的大规模工业流程,介绍了一种机器学习框架。该框架旨在:(i) 识别影响输出的关键参数;(ii) 对生产结果进行准确的样本外定性和定量预测。具体来说,我们以工业化化学气相沉积(CVD)工艺为例,解决了每个输入在形成工艺结果中的重要性这一关键问题。最初的目标是融合主题专业知识和聚类技术,专门针对工艺输出(这里指反应器中不同位置的涂层厚度测量)。这种方法可以识别出具有相似质量特征(如薄膜平均厚度和标准偏差)的生产运行组。特别是,不同群组所代表的结果差异可归因于特定输入的差异,这表明这些输入可能对生产结果至关重要。Shapley 值分析证实了所形成的假设。利用这一洞察力,我们随后使用识别出的关键流程输入实施了监督分类和回归方法。事实证明,所提出的方法在输入众多、数据不足、无法直接应用深度学习技术的情况下非常有价值,能为底层流程提供有意义的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信