{"title":"Fourier Diffusion for Sparse CT Reconstruction.","authors":"Anqi Liu, Grace J Gang, J Webster Stayman","doi":"10.1117/12.3008622","DOIUrl":null,"url":null,"abstract":"<p><p>Sparse CT reconstruction continues to be an area of interest in a number of novel imaging systems. Many different approaches have been tried including model-based methods, compressed sensing approaches, and most recently deep-learning-based processing. Diffusion models, in particular, have become extremely popular due to their ability to effectively encode rich information about images and to allow for posterior sampling to generate many possible outputs. One drawback of diffusion models is that their recurrent structure tends to be computationally expensive. In this work we apply a new Fourier diffusion approach that permits processing with many fewer time steps than the standard scalar diffusion model. We present an extension of the Fourier diffusion technique and evaluate it in a simulated breast cone-beam CT system with a sparse view acquisition.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12925 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sparse CT reconstruction continues to be an area of interest in a number of novel imaging systems. Many different approaches have been tried including model-based methods, compressed sensing approaches, and most recently deep-learning-based processing. Diffusion models, in particular, have become extremely popular due to their ability to effectively encode rich information about images and to allow for posterior sampling to generate many possible outputs. One drawback of diffusion models is that their recurrent structure tends to be computationally expensive. In this work we apply a new Fourier diffusion approach that permits processing with many fewer time steps than the standard scalar diffusion model. We present an extension of the Fourier diffusion technique and evaluate it in a simulated breast cone-beam CT system with a sparse view acquisition.