Structural and Biochemical Characterization of Aminoglycoside Nucleotidyltransferase(6)-Ib From Campylobacter fetus subsp. fetus.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Proteins-Structure Function and Bioinformatics Pub Date : 2025-02-01 Epub Date: 2024-09-09 DOI:10.1002/prot.26745
Pranav Nalam, Paul D Cook, Brian A Smith
{"title":"Structural and Biochemical Characterization of Aminoglycoside Nucleotidyltransferase(6)-Ib From Campylobacter fetus subsp. fetus.","authors":"Pranav Nalam, Paul D Cook, Brian A Smith","doi":"10.1002/prot.26745","DOIUrl":null,"url":null,"abstract":"<p><p>Aminoglycoside antibiotics have played a critical role in the treatment of both Gram-negative and Gram-positive bacterial infections. However, antibiotic resistance has severely compromised the efficacy of aminoglycosides. A leading cause of aminoglycoside resistance is mediated by bacterial enzymes that inactivate these drugs via chemical modification. Aminoglycoside nucleotidyltransferase-6 (ANT(6)) enzymes inactivate streptomycin by transferring an adenyl group from ATP to position 6 on the antibiotic. Despite the clinical significance of this activity, ANT(6) enzymes remain relatively uncharacterized. Here, we report the first high resolution x-ray crystallographic structure of ANT(6)-Ib from Campylobacter fetus subsp. fetus bound with streptomycin. Structural modeling and gel filtration chromatography experiments suggest that the enzyme exists as a dimer in which both subunits contribute to the active site. Moreover, superposition of the ANT(6)-Ib structure with the structurally related enzyme lincosamide nucleotidyltransferase B (LinB) permitted the identification of a putative nucleotide binding site. These data also suggest that residues D44 and D46 coordinate essential divalent metal ions and D102 functions as the catalytic base.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"413-419"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26745","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aminoglycoside antibiotics have played a critical role in the treatment of both Gram-negative and Gram-positive bacterial infections. However, antibiotic resistance has severely compromised the efficacy of aminoglycosides. A leading cause of aminoglycoside resistance is mediated by bacterial enzymes that inactivate these drugs via chemical modification. Aminoglycoside nucleotidyltransferase-6 (ANT(6)) enzymes inactivate streptomycin by transferring an adenyl group from ATP to position 6 on the antibiotic. Despite the clinical significance of this activity, ANT(6) enzymes remain relatively uncharacterized. Here, we report the first high resolution x-ray crystallographic structure of ANT(6)-Ib from Campylobacter fetus subsp. fetus bound with streptomycin. Structural modeling and gel filtration chromatography experiments suggest that the enzyme exists as a dimer in which both subunits contribute to the active site. Moreover, superposition of the ANT(6)-Ib structure with the structurally related enzyme lincosamide nucleotidyltransferase B (LinB) permitted the identification of a putative nucleotide binding site. These data also suggest that residues D44 and D46 coordinate essential divalent metal ions and D102 functions as the catalytic base.

胎儿弯曲杆菌亚种氨基糖苷核苷酸转移酶(6)-Ib 的结构和生化特性分析
氨基糖苷类抗生素在治疗革兰氏阴性和革兰氏阳性细菌感染方面发挥着至关重要的作用。然而,抗生素耐药性严重影响了氨基糖苷类药物的疗效。造成氨基糖苷类药物耐药性的一个主要原因是细菌酶通过化学修饰使这些药物失活。氨基糖苷核苷酸转移酶-6(ANT(6))酶通过将腺嘌呤基从 ATP 转移到抗生素的第 6 位来灭活链霉素。尽管这种活性具有重要的临床意义,但 ANT(6)酶的特性仍相对欠缺。在这里,我们首次报告了胎儿弯曲杆菌亚种的 ANT(6)-Ib 与链霉素结合的高分辨率 X 射线晶体结构。结构建模和凝胶过滤色谱实验表明,该酶以二聚体形式存在,其中两个亚基都对活性位点有贡献。此外,将 ANT(6)-Ib 结构与结构相关的林可酰胺核苷酸转移酶 B(LinB)叠加后,可以确定一个假定的核苷酸结合位点。这些数据还表明,残基 D44 和 D46 可协调重要的二价金属离子,而 D102 则起着催化碱基的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信