Potential Impact of an Artificial Intelligence-based Mammography Triage Algorithm on Performance and Workload in a Population-based Screening Sample.

IF 2 Q3 ONCOLOGY
Alyssa T Watanabe, Hoanh Vu, Chi Y Chim, Andrew W Litt, Tara Retson, Ray C Mayo
{"title":"Potential Impact of an Artificial Intelligence-based Mammography Triage Algorithm on Performance and Workload in a Population-based Screening Sample.","authors":"Alyssa T Watanabe, Hoanh Vu, Chi Y Chim, Andrew W Litt, Tara Retson, Ray C Mayo","doi":"10.1093/jbi/wbae056","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate potential screening mammography performance and workload impact using a commercial artificial intelligence (AI)-based triage device in a population-based screening sample.</p><p><strong>Methods: </strong>In this retrospective study, a sample of 2129 women who underwent screening mammograms were evaluated. The performance of a commercial AI-based triage device was compared with radiologists' reports, actual outcomes, and national benchmarks using commonly used mammography metrics. Up to 5 years of follow-up examination results were evaluated in cases to establish benignity. The algorithm sorted cases into groups of \"suspicious\" and \"low suspicion.\" A theoretical workload reduction was calculated by subtracting cases triaged as \"low suspicion\" from the sample.</p><p><strong>Results: </strong>At the default 93% sensitivity setting, there was significant improvement (P <.05) in the following triage simulation mean performance measures compared with actual outcome: 45.5% improvement in recall rate (13.4% to 7.3%; 95% CI, 6.2-8.3), 119% improvement in positive predictive value (PPV) 1 (5.3% to 11.6%; 95% CI, 9.96-13.4), 28.5% improvement in PPV2 (24.6% to 31.6%; 95% CI, 24.8-39.1), 20% improvement in sensitivity (83.3% to 100%; 95% CI, 100-100), and 7.2% improvement in specificity (87.2% to 93.5%; 95% CI, 92.4-94.5). A theoretical 62.5% workload reduction was possible. At the ultrahigh 99% sensitivity setting, a theoretical 27% workload reduction was possible. No cancers were missed by the algorithm at either sensitivity.</p><p><strong>Conclusion: </strong>Artificial intelligence-based triage in this simulation demonstrated potential for significant improvement in mammography performance and predicted substantial theoretical workload reduction without any missed cancers.</p>","PeriodicalId":43134,"journal":{"name":"Journal of Breast Imaging","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Breast Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jbi/wbae056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To evaluate potential screening mammography performance and workload impact using a commercial artificial intelligence (AI)-based triage device in a population-based screening sample.

Methods: In this retrospective study, a sample of 2129 women who underwent screening mammograms were evaluated. The performance of a commercial AI-based triage device was compared with radiologists' reports, actual outcomes, and national benchmarks using commonly used mammography metrics. Up to 5 years of follow-up examination results were evaluated in cases to establish benignity. The algorithm sorted cases into groups of "suspicious" and "low suspicion." A theoretical workload reduction was calculated by subtracting cases triaged as "low suspicion" from the sample.

Results: At the default 93% sensitivity setting, there was significant improvement (P <.05) in the following triage simulation mean performance measures compared with actual outcome: 45.5% improvement in recall rate (13.4% to 7.3%; 95% CI, 6.2-8.3), 119% improvement in positive predictive value (PPV) 1 (5.3% to 11.6%; 95% CI, 9.96-13.4), 28.5% improvement in PPV2 (24.6% to 31.6%; 95% CI, 24.8-39.1), 20% improvement in sensitivity (83.3% to 100%; 95% CI, 100-100), and 7.2% improvement in specificity (87.2% to 93.5%; 95% CI, 92.4-94.5). A theoretical 62.5% workload reduction was possible. At the ultrahigh 99% sensitivity setting, a theoretical 27% workload reduction was possible. No cancers were missed by the algorithm at either sensitivity.

Conclusion: Artificial intelligence-based triage in this simulation demonstrated potential for significant improvement in mammography performance and predicted substantial theoretical workload reduction without any missed cancers.

基于人工智能的乳腺 X 射线照相术分流算法对人群筛查样本的性能和工作量的潜在影响。
目的评估基于商业人工智能(AI)的分诊设备在人群筛查样本中的潜在筛查乳腺 X 线照相性能和对工作量的影响:在这项回顾性研究中,对 2129 名接受乳腺 X 光筛查的女性进行了评估。使用常用的乳腺 X 光检查指标,将商用人工智能分流设备的性能与放射科医生的报告、实际结果和国家基准进行了比较。对病例长达 5 年的随访检查结果进行了评估,以确定其良性。该算法将病例分为 "可疑 "和 "低度可疑 "两组。从样本中减去被分流为 "低度可疑 "的病例,计算出理论上减少的工作量:结果:在 93% 的默认灵敏度设置下,工作量有了显著改善(P在该模拟中,基于人工智能的分流技术显示出显著提高乳腺 X 射线照相术性能的潜力,并预测在不遗漏任何癌症的情况下,理论工作量会大幅减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
20.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信