Identification of shared and disease-specific intratumoral microbiome-host gene associations in gastrointestinal tumors.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Physiological genomics Pub Date : 2024-11-01 Epub Date: 2024-09-09 DOI:10.1152/physiolgenomics.00036.2024
Jing Liu, Hongyan Wang, Shuai Zhang, Jinyang Liu
{"title":"Identification of shared and disease-specific intratumoral microbiome-host gene associations in gastrointestinal tumors.","authors":"Jing Liu, Hongyan Wang, Shuai Zhang, Jinyang Liu","doi":"10.1152/physiolgenomics.00036.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Intratumoral microbiota and host genes interact to promote gastrointestinal disorders, but how the two interact to influence host tumorigenesis remains unclear. Here, we utilized a machine learning-based framework to jointly dissect the paired intratumoral microbiome and host transcriptome profiles in patients with colon adenocarcinoma, hepatocellular carcinoma, and gastric cancer. We identified associations between intratumoral microbes and host genes that depict shared as well as cancer type-specific patterns. We found that a common set of host genes and pathways implicated in cell proliferation and energy metabolism are associated with cancer type-specific intratumoral microbes. In addition, we also found that intratumoral microbes that have been implicated in three gastrointestinal tumors, such as <i>Lachnoclostridium</i>, are correlated with different host pathways in each tumor, indicating that similar microbes can influence host tumorigenesis in a cancer type-specific manner by regulation of different host genes. Our study reveals patterns of association between intratumoral microbiota and host genes in gastrointestinal tumors, providing new insights into the biology of gastrointestinal tumors.<b>NEW & NOTEWORTHY</b> Our study constitutes a pivotal advancement in elucidating the intricate relationship between the intratumoral microbiome and host gene regulation, thereby gaining insights into the pivotal role that the intratumoral microbiome plays in the etiology of gastrointestinal tumors.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00036.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intratumoral microbiota and host genes interact to promote gastrointestinal disorders, but how the two interact to influence host tumorigenesis remains unclear. Here, we utilized a machine learning-based framework to jointly dissect the paired intratumoral microbiome and host transcriptome profiles in patients with colon adenocarcinoma, hepatocellular carcinoma, and gastric cancer. We identified associations between intratumoral microbes and host genes that depict shared as well as cancer type-specific patterns. We found that a common set of host genes and pathways implicated in cell proliferation and energy metabolism are associated with cancer type-specific intratumoral microbes. In addition, we also found that intratumoral microbes that have been implicated in three gastrointestinal tumors, such as Lachnoclostridium, are correlated with different host pathways in each tumor, indicating that similar microbes can influence host tumorigenesis in a cancer type-specific manner by regulation of different host genes. Our study reveals patterns of association between intratumoral microbiota and host genes in gastrointestinal tumors, providing new insights into the biology of gastrointestinal tumors.NEW & NOTEWORTHY Our study constitutes a pivotal advancement in elucidating the intricate relationship between the intratumoral microbiome and host gene regulation, thereby gaining insights into the pivotal role that the intratumoral microbiome plays in the etiology of gastrointestinal tumors.

鉴定胃肠道肿瘤中共同的和疾病特异性的瘤内微生物组-宿主基因关联。
口腔内微生物群和宿主基因相互作用促进胃肠道疾病的发生,但两者如何相互作用影响宿主肿瘤发生仍不清楚。在这里,我们利用基于机器学习的框架,共同剖析了结肠腺癌、肝细胞癌和胃癌患者的成对瘤内微生物组和宿主转录组图谱。我们确定了瘤内微生物与宿主基因之间的关联,这些关联描绘了共享模式以及癌症类型特异性模式。我们发现,与细胞增殖和能量代谢有关的一组常见宿主基因和通路与特定癌症类型的瘤内微生物有关。此外,我们还发现,在三种胃肠道肿瘤中均有涉及的瘤内微生物(如拉氏梭菌)与每种肿瘤中不同的宿主通路相关,这表明类似的微生物可通过调控不同的宿主基因,以癌症类型特异性的方式影响宿主的肿瘤发生。我们的研究揭示了胃肠道肿瘤瘤内微生物群与宿主基因之间的关联模式,为胃肠道肿瘤生物学提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信