Drifting plasmons in two-dimensional electron channels: circuit analogy.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
O Sydoruk
{"title":"Drifting plasmons in two-dimensional electron channels: circuit analogy.","authors":"O Sydoruk","doi":"10.1098/rsta.2023.0312","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmons in two-dimensional electron channels have potential applications in the terahertz frequency range. Equivalent circuit models provide a convenient framework for analysing the plasmons. This article introduces a circuit model for plasmons in the presence of a dc current that flows in a gated channel. It is shown that drifting plasmons can be described by an <i>LC</i>-transmission line with distributed dependent sources. A circuit analogue of the Dyakonov-Shur instability is demonstrated. Then, a lumped-element transmission line with dependent sources is analysed, and non-reciprocity is demonstrated for examples of a right- and a left-handed transmission line. Effects of ohmic loss are discussed. The results could be used for the design of non-reciprocal transmission line devices. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230312"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0312","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmons in two-dimensional electron channels have potential applications in the terahertz frequency range. Equivalent circuit models provide a convenient framework for analysing the plasmons. This article introduces a circuit model for plasmons in the presence of a dc current that flows in a gated channel. It is shown that drifting plasmons can be described by an LC-transmission line with distributed dependent sources. A circuit analogue of the Dyakonov-Shur instability is demonstrated. Then, a lumped-element transmission line with dependent sources is analysed, and non-reciprocity is demonstrated for examples of a right- and a left-handed transmission line. Effects of ohmic loss are discussed. The results could be used for the design of non-reciprocal transmission line devices. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

二维电子通道中的漂移质子:电路类比。
二维电子通道中的等离子体在太赫兹频率范围内具有潜在的应用价值。等效电路模型为分析质子提供了方便的框架。本文介绍了在有直流电流流过门控通道时的质子电路模型。研究表明,漂移质子可以用具有分布式依赖源的 LC 传输线来描述。演示了 Dyakonov-Shur 不稳定性的电路模拟。然后,分析了具有从属源的块状元件传输线,并以右手和左手传输线为例演示了非互斥性。还讨论了欧姆损耗的影响。这些结果可用于非互易传输线设备的设计。本文是 "庆祝英国皇家学会牛顿国际奖学金 15 周年 "主题期刊的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信