Endothelium Piezo1 deletion alleviates experimental varicose veins by attenuating perivenous inflammation.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-04-01 Epub Date: 2024-09-09 DOI:10.1007/s11010-024-05115-9
Jiani Zhao, Yacheng Xiong, Yu Liu, Jin Ling, Shuai Liu, Wei Wang
{"title":"Endothelium Piezo1 deletion alleviates experimental varicose veins by attenuating perivenous inflammation.","authors":"Jiani Zhao, Yacheng Xiong, Yu Liu, Jin Ling, Shuai Liu, Wei Wang","doi":"10.1007/s11010-024-05115-9","DOIUrl":null,"url":null,"abstract":"<p><p>Previous large-scale genetic studies have prioritized the causal genes piezo type mechanosensitive ion channel component 1 (PIEZO1) and castor zinc finger 1 (CASZ1) associated with varicose veins (VVs). This study aims to evaluate their roles in both clinical and experimental VVs. In this study, we investigated abundance of PIEZO1 and CASZ1 in both varicose and normal veins from the same patients. Yoda1 (a selective PIEZO1 agonist, 2.6 mg/kg/day) or vehicle was administered intraperitoneally for 3 weeks to evaluate the effect of PIEZO1 activation on experimental VVs. Subsequently, endothelial Piezo1 deletion mice (Piezo1<sup>iΔEC</sup> mice) were generated to explored the role of endothelial PIEZO1 on VVs. Laser speckle imaging, flow cytometry, cell tracing with Evans blue or rhodamine-6G, and histopathological staining were utilized to evaluate the pathophysiology of VVs. Our results showed that mRNA expression of PIEZO1, but not CASZ1, was abundant and increased in clinical VVs. The Piezo1<sup>tP1-td</sup> mice revealed endothelium-specific expression of PIEZO1 in mice veins. By establishing iliac vein ligation-induced VVs in mice, Yoda1 exacerbated experimental VVs with increased inflammatory cell infiltration. Subsequently, endothelial Piezo1 deletion (Piezo1<sup>iΔEC</sup> mice) alleviated experimental VVs and vascular remodeling by directly reducing vascular permeability and leukocyte-endothelium interactions compared to the control (Piezo1<sup>fl/fl</sup> mice). PIEZO1 is highly expressed in clinical VVs, meanwhile, activation or inhibition of PIEZO1 exerts a remarkable effect on experimental VVs. Furthermore, Piezo1 may constitute a potential therapeutic approach for the medical treatment of VVs.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2423-2435"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05115-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous large-scale genetic studies have prioritized the causal genes piezo type mechanosensitive ion channel component 1 (PIEZO1) and castor zinc finger 1 (CASZ1) associated with varicose veins (VVs). This study aims to evaluate their roles in both clinical and experimental VVs. In this study, we investigated abundance of PIEZO1 and CASZ1 in both varicose and normal veins from the same patients. Yoda1 (a selective PIEZO1 agonist, 2.6 mg/kg/day) or vehicle was administered intraperitoneally for 3 weeks to evaluate the effect of PIEZO1 activation on experimental VVs. Subsequently, endothelial Piezo1 deletion mice (Piezo1iΔEC mice) were generated to explored the role of endothelial PIEZO1 on VVs. Laser speckle imaging, flow cytometry, cell tracing with Evans blue or rhodamine-6G, and histopathological staining were utilized to evaluate the pathophysiology of VVs. Our results showed that mRNA expression of PIEZO1, but not CASZ1, was abundant and increased in clinical VVs. The Piezo1tP1-td mice revealed endothelium-specific expression of PIEZO1 in mice veins. By establishing iliac vein ligation-induced VVs in mice, Yoda1 exacerbated experimental VVs with increased inflammatory cell infiltration. Subsequently, endothelial Piezo1 deletion (Piezo1iΔEC mice) alleviated experimental VVs and vascular remodeling by directly reducing vascular permeability and leukocyte-endothelium interactions compared to the control (Piezo1fl/fl mice). PIEZO1 is highly expressed in clinical VVs, meanwhile, activation or inhibition of PIEZO1 exerts a remarkable effect on experimental VVs. Furthermore, Piezo1 may constitute a potential therapeutic approach for the medical treatment of VVs.

Abstract Image

内皮细胞 Piezo1 基因缺失可减轻静脉周围炎症,从而缓解实验性静脉曲张。
先前的大规模遗传学研究已优先确定了与静脉曲张(VVs)相关的压电型机械敏感离子通道元件 1(PIEZO1)和蓖麻锌指 1(CASZ1)的致病基因。本研究旨在评估它们在临床和实验性静脉曲张中的作用。在本研究中,我们调查了来自同一患者的静脉曲张和正常静脉中 PIEZO1 和 CASZ1 的丰度。腹腔注射 Yoda1(一种选择性 PIEZO1 激动剂,2.6 毫克/千克/天)或药物 3 周,以评估 PIEZO1 激活对实验性静脉曲张的影响。随后,生成了内皮 Piezo1 缺失小鼠(Piezo1iΔEC 小鼠),以探讨内皮 PIEZO1 对 VVs 的作用。我们利用激光斑点成像、流式细胞术、伊文思蓝或罗丹明-6G细胞追踪以及组织病理学染色来评估VVs的病理生理学。我们的研究结果表明,在临床 VVs 中,PIEZO1(而非 CASZ1)的 mRNA 表达量丰富且增加。Piezo1tP1-td 小鼠显示了 PIEZO1 在小鼠静脉中的内皮特异性表达。通过在小鼠体内建立髂静脉结扎诱导的VV,Yoda1加剧了实验性VV,增加了炎症细胞浸润。随后,与对照组(Piezo1fl/fl 小鼠)相比,内皮细胞 Piezo1 基因缺失(Piezo1iΔEC 小鼠)通过直接降低血管通透性和白细胞与内皮细胞的相互作用,缓解了实验性 VVs 和血管重塑。PIEZO1 在临床 VV 中高表达,同时,激活或抑制 PIEZO1 对实验性 VV 有显著效果。此外,PIEZO1可能是治疗VVs的一种潜在疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信