{"title":"Molecular, structural, and functional characterization of delta subunit of T-complex protein-1 from <i>Leishmania donovani</i>.","authors":"Apeksha Anand, Gunjan Gautam, Gaurava Srivastava, Shailendra Yadav, Karthik Ramalingam, Mohammad Imran Siddiqi, Neena Goyal","doi":"10.1128/iai.00234-24","DOIUrl":null,"url":null,"abstract":"<p><p>Chaperonins/Heat shock protein 60 are ubiquitous multimeric protein complexes that assist in the folding of partially and/or misfolded proteins using metabolic energy into their native stage. The eukaryotic group II chaperonin, also referred as T-complex protein-1 ring complex (TRiC)/T-complex protein-1 (TCP1)/chaperonin containing T-complex protein (CCT), contains 8-9 paralogous subunits, arranged in each of the two rings of hetero-oligomeric complex. In <i>Leishmania</i>, till date, only one subunit, LdTCP1γ, has been well studied. Here, we report the molecular, structural, and functional characterization of TCP1δ subunit of <i>Leishmania donovani</i> (LdTCP1δ), the causative agent of Indian kala-azar. LdTCP1δ gene exhibited only 27.9% identity with LdTCP1γ and clustered in a separate branch in the phylogenic tree of LdTCP1 subunits. The purified recombinant protein formed a high molecular weight complex (0.75 MDa), arranged into 16-mer assembly, and performed <i>in vitro</i> chaperonin activity as assayed by ATP-dependent luciferase folding. LdTCP1δ exhibits 1.8-fold upregulated expression in metabolically active, rapidly dividing log phase promastigotes. Over-expression of LdTCP1δ in promastigotes results in increased infectivity and rate of multiplication of intracellular amastigotes. The study thus establishes the existence of an individual functionally active homo-oligomeric complex of LdTCP1δ chaperonin with its role in parasite infectivity and multiplication.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00234-24","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chaperonins/Heat shock protein 60 are ubiquitous multimeric protein complexes that assist in the folding of partially and/or misfolded proteins using metabolic energy into their native stage. The eukaryotic group II chaperonin, also referred as T-complex protein-1 ring complex (TRiC)/T-complex protein-1 (TCP1)/chaperonin containing T-complex protein (CCT), contains 8-9 paralogous subunits, arranged in each of the two rings of hetero-oligomeric complex. In Leishmania, till date, only one subunit, LdTCP1γ, has been well studied. Here, we report the molecular, structural, and functional characterization of TCP1δ subunit of Leishmania donovani (LdTCP1δ), the causative agent of Indian kala-azar. LdTCP1δ gene exhibited only 27.9% identity with LdTCP1γ and clustered in a separate branch in the phylogenic tree of LdTCP1 subunits. The purified recombinant protein formed a high molecular weight complex (0.75 MDa), arranged into 16-mer assembly, and performed in vitro chaperonin activity as assayed by ATP-dependent luciferase folding. LdTCP1δ exhibits 1.8-fold upregulated expression in metabolically active, rapidly dividing log phase promastigotes. Over-expression of LdTCP1δ in promastigotes results in increased infectivity and rate of multiplication of intracellular amastigotes. The study thus establishes the existence of an individual functionally active homo-oligomeric complex of LdTCP1δ chaperonin with its role in parasite infectivity and multiplication.
期刊介绍:
Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.