Unveiling heavy metal pollution dynamics in sediments of river Ulhas, Maharashtra, India: a comprehensive analysis of anthropogenic influence, pollution indices, and health risk assessment.
{"title":"Unveiling heavy metal pollution dynamics in sediments of river Ulhas, Maharashtra, India: a comprehensive analysis of anthropogenic influence, pollution indices, and health risk assessment.","authors":"Akshay Botle, Sayli Salgaonkar, Rahul Tiwari, Gayatri Barabde","doi":"10.1007/s10653-024-02208-8","DOIUrl":null,"url":null,"abstract":"<p><p>Metals and metalloids tainting sediments is an eminent issue, predominantly in megacities like Mumbai and Navi Mumbai, requiring an exhaustive examination to identify metal levels in river bodies that serve various populations. Thus, utilising pollution indices, multivariate analysis, and health risk assessment studies, we propose a novel investigation to examine the metal content in the Ulhas River sediments, a prominent agricultural and drinking water supply (320 million-litre per day) near Mumbai in Maharashtra, India. The eleven metals and metalloids (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) were examined monthly from 10 stations totaling 120 sediment specimens from October 2022 to September 2023. Investigations revealed that average values of Cr, Cu, Hg, and Ni exceeded Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council values, while all metals exceeded World surface rock average limits except As. Various pollution indices showed that upstream sites had none to low level contamination, whereas downstream locations had moderate to considerable contamination, suggesting anthropogenic influences. Furthermore, multivariate analysis including correlation, cluster, and principal component analysis identified that sediment pollution was mostly caused by anthropogenic activities. Lastly, health risk assessment indicated Fe was non-carcinogenic to children, whereas Cr and Ni were carcinogenic to children and adults, with children being more susceptible. Thus, from the findings of the study it is clear that, despite low to moderate pollution levels, metals may have significant repercussions, thus requiring long-term planning, frequent monitoring, and metal abatement strategies to mitigate river contamination.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02208-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metals and metalloids tainting sediments is an eminent issue, predominantly in megacities like Mumbai and Navi Mumbai, requiring an exhaustive examination to identify metal levels in river bodies that serve various populations. Thus, utilising pollution indices, multivariate analysis, and health risk assessment studies, we propose a novel investigation to examine the metal content in the Ulhas River sediments, a prominent agricultural and drinking water supply (320 million-litre per day) near Mumbai in Maharashtra, India. The eleven metals and metalloids (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) were examined monthly from 10 stations totaling 120 sediment specimens from October 2022 to September 2023. Investigations revealed that average values of Cr, Cu, Hg, and Ni exceeded Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council values, while all metals exceeded World surface rock average limits except As. Various pollution indices showed that upstream sites had none to low level contamination, whereas downstream locations had moderate to considerable contamination, suggesting anthropogenic influences. Furthermore, multivariate analysis including correlation, cluster, and principal component analysis identified that sediment pollution was mostly caused by anthropogenic activities. Lastly, health risk assessment indicated Fe was non-carcinogenic to children, whereas Cr and Ni were carcinogenic to children and adults, with children being more susceptible. Thus, from the findings of the study it is clear that, despite low to moderate pollution levels, metals may have significant repercussions, thus requiring long-term planning, frequent monitoring, and metal abatement strategies to mitigate river contamination.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.