{"title":"Molecular Mechanism of Physical and Mechanical Improvement in Graphene/Graphene Oxide-Epoxy Composite Materials.","authors":"Deniz Budak, Sevil Sarikurt, Tugce Gur, Harun Ozkanakti, Huseyin Alagoz, Feyza Eryol, Erol Yildirim","doi":"10.1002/cphc.202400497","DOIUrl":null,"url":null,"abstract":"<p><p>The performance provided by graphene (Gr) and graphene oxide (GO) additives can be improved by achieving strong adhesion and uniform dispersion in the epoxy resin matrix. In this study, molecular modeling and simulation of DGEBA/DETA based epoxy nanocomposites containing Gr and GO additives were performed. Density functional theory and molecular dynamics simulations were used to investigate interfacial interaction energies and Young's Modulus. Improvement in the interaction energies was studied by controlling the epoxy:hardener ratio, type and the number of oxygen-containing functional groups on the GO, the mass percentage of Gr/GO filler in the epoxy matrix, size and dispersion of GO in the cell. It was demonstrated that functional groups with up to 10 % oxygen content in GO significantly increase interfacial interaction energy for large size Gr/GO. Increasing DETA type amine ratio in the preparation of epoxy polymers increases the interaction energy for high oxygen content while decreasing the interaction energy for low oxygen content in GO for small size GO with edge functional groups. The performance of material dramatically decreased even at high DETA hardener and high GO mass percentages when the aggregation factor of Gr/GO was included in simulations that explain lower Gr/GO percentages in the experimental studies.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400497","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The performance provided by graphene (Gr) and graphene oxide (GO) additives can be improved by achieving strong adhesion and uniform dispersion in the epoxy resin matrix. In this study, molecular modeling and simulation of DGEBA/DETA based epoxy nanocomposites containing Gr and GO additives were performed. Density functional theory and molecular dynamics simulations were used to investigate interfacial interaction energies and Young's Modulus. Improvement in the interaction energies was studied by controlling the epoxy:hardener ratio, type and the number of oxygen-containing functional groups on the GO, the mass percentage of Gr/GO filler in the epoxy matrix, size and dispersion of GO in the cell. It was demonstrated that functional groups with up to 10 % oxygen content in GO significantly increase interfacial interaction energy for large size Gr/GO. Increasing DETA type amine ratio in the preparation of epoxy polymers increases the interaction energy for high oxygen content while decreasing the interaction energy for low oxygen content in GO for small size GO with edge functional groups. The performance of material dramatically decreased even at high DETA hardener and high GO mass percentages when the aggregation factor of Gr/GO was included in simulations that explain lower Gr/GO percentages in the experimental studies.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.