{"title":"Discretisation of the Hough parameter space for fitting and recognising geometric primitives in 3D point clouds","authors":"Chiara Romanengo, Bianca Falcidieno, Silvia Biasotti","doi":"10.1016/j.matcom.2024.08.033","DOIUrl":null,"url":null,"abstract":"<div><p>Research in recognising and fitting simple geometric shapes has been ongoing since the 1970s, with various approaches proposed, including stochastic methods, parameter methods, primitive-based registration techniques, and more recently, deep learning. The Hough transform is a method of interest due to its demonstrated robustness to noise and outliers, ability to handle missing data, and support for multiple model instances. Unfortunately, one of the main limitations of the Hough transform is how to properly discretise its parameter space, as increasing their number or decreasing the sampling frequency can make it computationally expensive.</p><p>The relationship between the approximation accuracy and the parameter space’s discretisation is investigated to address this. We present two distinct discretisations to illustrate how the fitting and recognition quality can be improved by selecting an appropriate parameter discretisation. Our parameter-driven space discretisation is shown to significantly improve the parameter recognition quality over the classical method and reduce computational time and space by decreasing the discretisation’s dimension, as demonstrated by an extensive validation on a benchmark of geometric primitives. Preliminary experiments are also presented on segmenting datasets from urban buildings and CAD objects.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378475424003458/pdfft?md5=808410d9aafec4900a4d7d00f9dcdd3b&pid=1-s2.0-S0378475424003458-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003458","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Research in recognising and fitting simple geometric shapes has been ongoing since the 1970s, with various approaches proposed, including stochastic methods, parameter methods, primitive-based registration techniques, and more recently, deep learning. The Hough transform is a method of interest due to its demonstrated robustness to noise and outliers, ability to handle missing data, and support for multiple model instances. Unfortunately, one of the main limitations of the Hough transform is how to properly discretise its parameter space, as increasing their number or decreasing the sampling frequency can make it computationally expensive.
The relationship between the approximation accuracy and the parameter space’s discretisation is investigated to address this. We present two distinct discretisations to illustrate how the fitting and recognition quality can be improved by selecting an appropriate parameter discretisation. Our parameter-driven space discretisation is shown to significantly improve the parameter recognition quality over the classical method and reduce computational time and space by decreasing the discretisation’s dimension, as demonstrated by an extensive validation on a benchmark of geometric primitives. Preliminary experiments are also presented on segmenting datasets from urban buildings and CAD objects.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.