A computational approach to extreme values and related hitting probabilities in level-dependent quasi-birth–death processes

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
A. Di Crescenzo , A. Gómez-Corral , D. Taipe
{"title":"A computational approach to extreme values and related hitting probabilities in level-dependent quasi-birth–death processes","authors":"A. Di Crescenzo ,&nbsp;A. Gómez-Corral ,&nbsp;D. Taipe","doi":"10.1016/j.matcom.2024.08.019","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyzes the dynamics of a level-dependent quasi-birth–death process <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mi>J</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>:</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>, i.e., a bi-variate Markov chain defined on the countable state space <span><math><mrow><msubsup><mrow><mo>∪</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><mi>l</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mo>:</mo><mi>j</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mo>}</mo></mrow></mrow></math></span>, for integers <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>i</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, which has the special property that its <span><math><mi>q</mi></math></span>-matrix has a block-tridiagonal form. Under the assumption that the first passage to the subset <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> occurs in a finite time with certainty, we characterize the probability law of <span><math><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>,</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow></math></span>, where <span><math><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> is the running maximum level attained by process <span><math><mi>X</mi></math></span> before its first visit to states in <span><math><mrow><mi>l</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> is the first time that the level process <span><math><mrow><mo>{</mo><mi>I</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>:</mo><mi>t</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></math></span> reaches the running maximum <span><math><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span>, and <span><math><mrow><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> is the phase at time <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span>. Our methods rely on the use of restricted Laplace–Stieltjes transforms of <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub></math></span> on the set of sample paths <span><math><mrow><mo>{</mo><msub><mrow><mi>I</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>=</mo><mi>i</mi><mo>,</mo><mi>J</mi><mrow><mo>(</mo><msub><mrow><mi>τ</mi></mrow><mrow><mo>max</mo></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>j</mi><mo>}</mo></mrow></math></span>, and related processes under taboo of certain subsets of states. The utility of the resulting computational algorithms is demonstrated in two epidemic models: the SIS model for horizontally and vertically transmitted diseases; and the SIR model with constant population size.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378475424003215/pdfft?md5=ec529de84353f32482eeacc5cffbcd11&pid=1-s2.0-S0378475424003215-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003215","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the dynamics of a level-dependent quasi-birth–death process X={(I(t),J(t)):t0}, i.e., a bi-variate Markov chain defined on the countable state space i=0l(i) with l(i)={(i,j):j{0,,Mi}}, for integers MiN0 and iN0, which has the special property that its q-matrix has a block-tridiagonal form. Under the assumption that the first passage to the subset l(0) occurs in a finite time with certainty, we characterize the probability law of (τmax,Imax,J(τmax)), where Imax is the running maximum level attained by process X before its first visit to states in l(0), τmax is the first time that the level process {I(t):t0} reaches the running maximum Imax, and J(τmax) is the phase at time τmax. Our methods rely on the use of restricted Laplace–Stieltjes transforms of τmax on the set of sample paths {Imax=i,J(τmax)=j}, and related processes under taboo of certain subsets of states. The utility of the resulting computational algorithms is demonstrated in two epidemic models: the SIS model for horizontally and vertically transmitted diseases; and the SIR model with constant population size.

依赖水平的准出生-死亡过程中极值和相关命中概率的计算方法
本文分析了与水平相关的准出生-死亡过程 X={(I(t),J(t)):t≥0}的动力学,即定义在可数状态空间∪i=0∞l(i)上的双变量马尔可夫链、一个定义在可数状态空间∪i=0∞l(i)上的双变量马尔可夫链,对于整数 Mi∈N0 和 i∈N0,l(i)={(i,j):j∈{0,...,Mi}}。假设第一次访问子集 l(0)是在有限时间内确定发生的,我们将描述(τmax,Imax,J(τmax))的概率规律,其中 Imax 是进程 X 在第一次访问 l(0)中的状态之前达到的运行最大水平,τmax 是水平进程 {I(t):t≥0} 第一次达到运行最大 Imax 的时间,J(τmax) 是τmax 时间的相位。我们的方法依赖于在样本路径集 {Imax=i,J(τmax)=j} 上使用τmax 的受限拉普拉斯-斯蒂尔杰斯变换,以及在某些状态子集禁忌下的相关过程。由此产生的计算算法的实用性在两个流行病模型中得到了证明:横向和纵向传播疾病的 SIS 模型;以及人口规模恒定的 SIR 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信