A quadrature method for Volterra integral equations with highly oscillatory Bessel kernel

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Longbin Zhao , Pengde Wang , Qiongqi Fan
{"title":"A quadrature method for Volterra integral equations with highly oscillatory Bessel kernel","authors":"Longbin Zhao ,&nbsp;Pengde Wang ,&nbsp;Qiongqi Fan","doi":"10.1016/j.matcom.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>To avoid computing moments, this work adopts generalized quadrature method for Volterra integral equations with highly oscillatory Bessel kernel. At first, we study the influence of the interval length and frequency in detail after recalling the construction of the quadrature method. Then, the two-point quadrature method is employed for the equation. By estimating the weights, we could guarantee that the discretized equation is solvable. For its convergence, our analysis shows that the proposed method enjoys asymptotic order <span><math><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></math></span> and as <span><math><mi>h</mi></math></span> decreases it converges with order 2 as well. Some numerical illustrations are provided to test the method in the numerical part.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003483","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To avoid computing moments, this work adopts generalized quadrature method for Volterra integral equations with highly oscillatory Bessel kernel. At first, we study the influence of the interval length and frequency in detail after recalling the construction of the quadrature method. Then, the two-point quadrature method is employed for the equation. By estimating the weights, we could guarantee that the discretized equation is solvable. For its convergence, our analysis shows that the proposed method enjoys asymptotic order 5/2 and as h decreases it converges with order 2 as well. Some numerical illustrations are provided to test the method in the numerical part.

具有高振荡贝塞尔核的 Volterra 积分方程的正交方法
为了避免计算矩,本研究采用广义正交法来求解具有高振荡贝塞尔核的 Volterra 积分方程。首先,我们在回顾正交方法的构造后,详细研究了区间长度和频率的影响。然后,对方程采用两点正交法。通过估计权重,我们可以保证离散方程是可解的。在收敛性方面,我们的分析表明,所提出的方法具有 5/2 的渐近阶,随着 h 的减小,其收敛阶数也为 2。在数值部分,我们提供了一些数值示例来检验该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信