{"title":"Edge- and vertex-originated differences between nanoparticles and nanovoids: A density functional theory study of face-centered-cubic Al","authors":"","doi":"10.1016/j.commatsci.2024.113342","DOIUrl":null,"url":null,"abstract":"<div><p>The differences between nanoparticles and nanovoids cannot be clearly distinguished energetically using conventional comparisons based on the surface energies of these species. For example, nanoparticles and nanovoids with the same volume and shape are considered energetically equivalent to the conventional Wulff construction, and so the difference in their morphology cannot be evaluated. This can be attributed to fact that using such approaches, the effects of excess defects, edges, and vertices in nanoparticles and nanovoids are typically ignored. In this study, we investigated the energetic differences between face-centered-cubic (FCC) nanoparticles of Al and nanovoids in bulk FCC Al structure with conventional truncated octahedral shapes by calculating the excess energies attributed to their edges, vertices, and sizes. This was achieved using density functional theory calculations and our previously reported method for evaluating the effects of edges and vertices. The morphological differences between the nanoparticles and nanovoids were also discussed based on the obtained results.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927025624005639/pdfft?md5=8362709c8268b5336550578642624288&pid=1-s2.0-S0927025624005639-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005639","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The differences between nanoparticles and nanovoids cannot be clearly distinguished energetically using conventional comparisons based on the surface energies of these species. For example, nanoparticles and nanovoids with the same volume and shape are considered energetically equivalent to the conventional Wulff construction, and so the difference in their morphology cannot be evaluated. This can be attributed to fact that using such approaches, the effects of excess defects, edges, and vertices in nanoparticles and nanovoids are typically ignored. In this study, we investigated the energetic differences between face-centered-cubic (FCC) nanoparticles of Al and nanovoids in bulk FCC Al structure with conventional truncated octahedral shapes by calculating the excess energies attributed to their edges, vertices, and sizes. This was achieved using density functional theory calculations and our previously reported method for evaluating the effects of edges and vertices. The morphological differences between the nanoparticles and nanovoids were also discussed based on the obtained results.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.