Multidisciplinary hydrogeochemical and isotopic assessment of the Pordenone Plain (Northeastern Italy) for water resources sustainability

IF 3.1 3区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Dino Di Renzo , Elena Marrocchino , Chiara Telloli , Daniele Cinti , Lorenzo Copia , Lucia Ortega , Renzo Tassinari , Carmela Vaccaro
{"title":"Multidisciplinary hydrogeochemical and isotopic assessment of the Pordenone Plain (Northeastern Italy) for water resources sustainability","authors":"Dino Di Renzo ,&nbsp;Elena Marrocchino ,&nbsp;Chiara Telloli ,&nbsp;Daniele Cinti ,&nbsp;Lorenzo Copia ,&nbsp;Lucia Ortega ,&nbsp;Renzo Tassinari ,&nbsp;Carmela Vaccaro","doi":"10.1016/j.apgeochem.2024.106161","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to comprehensively characterize the hydro-geochemical and isotopic features of the complex groundwater system in the Pordenone Plain (northeastern Italy). The area is an important industrial and agricultural area exposed to severe anthropogenic pressure and climate change, which put its water resources at risk in terms of quantity and quality, making it of high scientific and social interest. The hydrogeological setting of the Pordenone Plain has been previously simplified as a phreatic continuous aquifer in the High Plain that changes into a multilayered aquifer system towards the Low Plain. However, this study reveals significant lithological and structural heterogeneities in the High Plain that exert a strong influence on its subsurface hydrodynamics. All waters exhibit a Ca(Mg)–HCO<sub>3</sub> composition with relatively high Na–K values in the aquifers of the Low Plain likely related to cation exchange processes. Water stable isotopes (δ<sup>2</sup>H–H<sub>2</sub>O and δ<sup>18</sup>O–H<sub>2</sub>O) indicate that the deep aquifers in the Low Plain are confined by impermeable geological formations, such as clays and siltstones, which entirely restrict water mixing with shallower aquifers. Concurrently, tritium analysis provides evidence of slow recharge and flow rate. Three primary groundwater flows have been identified within the plain, as follows: 1) a surface flow that affects the unconfined or semi-confined aquifers of the High Plain hosted in gravelly sediments; 2) an intermediate flow fed by the pedemontane zone, which includes unconfined deep aquifers of the High Plain, semi-confined/shallow aquifers (at a depth of 40–50 m) located near the resurgence belt area and karst springs located in eastern pedemontane of the Cansiglio Plateau; 3) a deep flow fed by the mountainous zone that affects the deep confined aquifers of the Low Plain. A reliable hydrogeochemical conceptual model has been developed to explain the compositional variability of the studied waters, providing valuable insights for the sustainable management of groundwater resources in the Pordenone Plain.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"175 ","pages":"Article 106161"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088329272400266X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to comprehensively characterize the hydro-geochemical and isotopic features of the complex groundwater system in the Pordenone Plain (northeastern Italy). The area is an important industrial and agricultural area exposed to severe anthropogenic pressure and climate change, which put its water resources at risk in terms of quantity and quality, making it of high scientific and social interest. The hydrogeological setting of the Pordenone Plain has been previously simplified as a phreatic continuous aquifer in the High Plain that changes into a multilayered aquifer system towards the Low Plain. However, this study reveals significant lithological and structural heterogeneities in the High Plain that exert a strong influence on its subsurface hydrodynamics. All waters exhibit a Ca(Mg)–HCO3 composition with relatively high Na–K values in the aquifers of the Low Plain likely related to cation exchange processes. Water stable isotopes (δ2H–H2O and δ18O–H2O) indicate that the deep aquifers in the Low Plain are confined by impermeable geological formations, such as clays and siltstones, which entirely restrict water mixing with shallower aquifers. Concurrently, tritium analysis provides evidence of slow recharge and flow rate. Three primary groundwater flows have been identified within the plain, as follows: 1) a surface flow that affects the unconfined or semi-confined aquifers of the High Plain hosted in gravelly sediments; 2) an intermediate flow fed by the pedemontane zone, which includes unconfined deep aquifers of the High Plain, semi-confined/shallow aquifers (at a depth of 40–50 m) located near the resurgence belt area and karst springs located in eastern pedemontane of the Cansiglio Plateau; 3) a deep flow fed by the mountainous zone that affects the deep confined aquifers of the Low Plain. A reliable hydrogeochemical conceptual model has been developed to explain the compositional variability of the studied waters, providing valuable insights for the sustainable management of groundwater resources in the Pordenone Plain.

Abstract Image

对波代诺内平原(意大利东北部)进行多学科水文地质化学和同位素评估,促进水资源的可持续性
本研究旨在全面描述波代诺内平原(意大利东北部)复杂地下水系统的水文地球化学和同位素特征。该地区是一个重要的工业和农业区,受到严重的人为压力和气候变化的影响,水资源的数量和质量都受到威胁,因此具有很高的科学和社会价值。波代诺内平原的水文地质环境以前被简化为高平原上的连续含水层,向低平原转变为多层含水层系统。然而,这项研究揭示了高平原的岩性和结构异质性,对其地下水动力产生了重大影响。所有水体的成分都是 Ca(Mg)-HCO3,低平原含水层的 Na-K 值相对较高,这可能与阳离子交换过程有关。水的稳定同位素(δ2H-H2O 和 δ18O-H2O)表明,低平原的深含水层受到粘土和粉砂岩等不透水地质构造的限制,完全限制了水与较浅含水层的混合。同时,氚分析提供了补给和流速缓慢的证据。平原内已确定的主要地下水流有以下三种:1) 地表水流,影响高平原砾质沉积物中的非承压或半承压含水层;2)由山麓地带提供水源的中间水流,包括高平原的非承压深含水层、位于回升带地区附近的半承压/浅含水层(深度为 40-50 米)以及位于坎西格里奥高原东部山麓地带的岩溶泉水;3)由山区提供水源的深层水流,影响低平原的深承压含水层。已经建立了一个可靠的水文地质化学概念模型来解释所研究水体的成分变化,为波代诺内平原地下水资源的可持续管理提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Geochemistry
Applied Geochemistry 地学-地球化学与地球物理
CiteScore
6.10
自引率
8.80%
发文量
272
审稿时长
65 days
期刊介绍: Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application. Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信