A. Guarise , R. Bertolini , M. Franceschi , A. Ghiotti , S. Bruschi
{"title":"Mechanical and corrosion behaviour of superelastic additively manufactured Nitinol for biomedical applications","authors":"A. Guarise , R. Bertolini , M. Franceschi , A. Ghiotti , S. Bruschi","doi":"10.1016/j.procir.2024.08.024","DOIUrl":null,"url":null,"abstract":"<div><p>The interest in Nitinol (NiTi) as biomedical material is growing thanks to its unique properties, particularly shape memory and superelasticity. Recently, additive manufacturing (AM) has emerged as an alternative to fabricate superelastic NiTi biomedical parts. However, when using AM to fabricate NiTi parts, a proper heat treatment must follow, recommended not only to alleviate the AM-induced residual stresses, but also to develop a suitable microstructure to enhance the material superelasticity. This heat treatment is expected to modify also the NiTi corrosion behavior, which must be evaluated since corrosion may lead to the possible harmful release of nickel ions in the human environment.</p><p>In this framework, the objective of the paper is to assess the mechanical and corrosion properties of a Ni-rich NiTi fabricated by laser powder bed fusion before and after heat treatment. To this aim, nano-indentation was used to evaluate superelasticity, whereas electro-chemical tests provided the corrosion potential and current density. The results of the analyses show that both the mechanical and corrosion characteristics were related to the peculiar microstructural features induced by the AM and heat treatment steps, nevertheless ageing at 600°C was the best in terms of superelasticity, while aging at 300°C assured the highest corrosion resistance.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"125 ","pages":"Pages 136-141"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124003780/pdf?md5=18fab1928438a972f7578f99041d7df1&pid=1-s2.0-S2212827124003780-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124003780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The interest in Nitinol (NiTi) as biomedical material is growing thanks to its unique properties, particularly shape memory and superelasticity. Recently, additive manufacturing (AM) has emerged as an alternative to fabricate superelastic NiTi biomedical parts. However, when using AM to fabricate NiTi parts, a proper heat treatment must follow, recommended not only to alleviate the AM-induced residual stresses, but also to develop a suitable microstructure to enhance the material superelasticity. This heat treatment is expected to modify also the NiTi corrosion behavior, which must be evaluated since corrosion may lead to the possible harmful release of nickel ions in the human environment.
In this framework, the objective of the paper is to assess the mechanical and corrosion properties of a Ni-rich NiTi fabricated by laser powder bed fusion before and after heat treatment. To this aim, nano-indentation was used to evaluate superelasticity, whereas electro-chemical tests provided the corrosion potential and current density. The results of the analyses show that both the mechanical and corrosion characteristics were related to the peculiar microstructural features induced by the AM and heat treatment steps, nevertheless ageing at 600°C was the best in terms of superelasticity, while aging at 300°C assured the highest corrosion resistance.
由于镍钛醇(NiTi)具有独特的性能,尤其是形状记忆和超弹性,人们对其作为生物医学材料的兴趣与日俱增。最近,增材制造(AM)已成为制造超弹性镍钛生物医学部件的一种替代方法。然而,在使用 AM 制造镍钛零件时,必须进行适当的热处理,建议不仅要减轻 AM 引起的残余应力,还要形成合适的微观结构,以增强材料的超弹性。在此框架下,本文旨在评估通过激光粉末床熔融技术制造的富镍钛在热处理前后的机械和腐蚀特性。为此,采用纳米压痕法评估超弹性,而电化学测试则提供了腐蚀电位和电流密度。分析结果表明,机械和腐蚀特性都与 AM 和热处理步骤引起的特殊微观结构特征有关,但 600°C 老化在超弹性方面效果最佳,而 300°C 老化则确保了最高的耐腐蚀性。