{"title":"Incompressible tensor categories","authors":"Kevin Coulembier, Pavel Etingof, Victor Ostrik","doi":"10.1016/j.aim.2024.109935","DOIUrl":null,"url":null,"abstract":"<div><p>A symmetric tensor category <span><math><mi>D</mi></math></span> over an algebraically closed field <strong>k</strong> is called <strong>incompressible</strong> if its objects have finite length (<span><math><mi>D</mi></math></span> is pretannakian) and every tensor functor out of <span><math><mi>D</mi></math></span> is an embedding of a tensor subcategory. E.g., the categories <span><math><mi>Vec</mi></math></span>, <span><math><mi>sVec</mi></math></span> of vector and supervector spaces are incompressible. Moreover, by Deligne's theorem <span><span>[15]</span></span>, if <span><math><mrow><mi>char</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> then any tensor category of moderate growth uniquely fibres over <span><math><mi>sVec</mi></math></span>. This implies that <span><math><mi>Vec</mi></math></span>, <span><math><mi>sVec</mi></math></span> are the only incompressible categories over <strong>k</strong> in this class, and perhaps altogether, as we expect that all incompressible categories have moderate growth.</p><p>Similarly, in characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, we also have incompressible Verlinde categories <span><math><msub><mrow><mi>Ver</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msubsup><mrow><mi>Ver</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>, and by <span><span>[10]</span></span> any Frobenius exact category of moderate growth uniquely fibres over <span><math><msub><mrow><mi>Ver</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, meaning that, in this class, the above categories are the only incompressible ones. More generally, the Verlinde categories <span><math><msub><mrow><mi>Ver</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, <span><math><msubsup><mrow><mi>Ver</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>, <span><math><mi>n</mi><mo>≤</mo><mo>∞</mo></math></span> introduced in <span><span>[3]</span></span>, <span><span>[7]</span></span> are incompressible, and a key conjecture is that every tensor category of moderate growth uniquely fibres over <span><math><msub><mrow><mi>Ver</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>∞</mo></mrow></msup></mrow></msub></math></span>. This would make the above the only incompressible categories in this class (and perhaps altogether).</p><p>We prove a part of this conjecture, showing that every tensor category of moderate growth fibres over an incompressible one. So it remains to understand incompressible categories, and we prove several results in this direction. Namely, let <span><math><mi>D</mi></math></span>-Tann be the category of tensor categories that fibre over <span><math><mi>D</mi></math></span>. Then we say that <span><math><mi>D</mi></math></span> is <strong>subterminal</strong> if it is a terminal object of <span><math><mi>D</mi></math></span>-Tann (i.e., fibre functors to <span><math><mi>D</mi></math></span> are unique when exist), and that <span><math><mi>D</mi></math></span> is a <strong>Bezrukavnikov category</strong> if <span><math><mi>D</mi></math></span>-Tann is closed under taking images of tensor functors (=quotient categories). Clearly, a subterminal Bezrukavnikov category is incompressible, and we conjecture that the converse also holds; for instance, tensor subcategories of <span><math><msub><mrow><mi>Ver</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> are known to be subterminal. We prove that furthermore they are Bezrukavnikov categories, generalizing the result of Bezrukavnikov <span><span>[4]</span></span> in the case of <span><math><mi>Vec</mi></math></span>. Finally, we show that a tensor subcategory of a finite incompressible category is incompressible.</p><p>We also find intrinsic sufficient conditions for incompressibility and subterminality. Namely, <span><math><mi>D</mi></math></span> is called <strong>maximally nilpotent</strong> if the growth rate of the length of the symmetric powers of every object is the minimal one theoretically possible. We show that a finite maximally nilpotent category is incompressible, and also subterminal if it satisfies an additional <strong>geometric reductivity</strong> condition (for every morphism <span><math><mi>X</mi><mo>↠</mo><mn>1</mn></math></span> in <span><math><mi>D</mi></math></span>, there exists <span><math><mi>n</mi><mo>></mo><mn>0</mn></math></span> for which <span><math><msup><mrow><mi>Sym</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>X</mi><mo>↠</mo><mn>1</mn></math></span> is split). Then we verify these conditions for the category <span><math><msub><mrow><mi>Ver</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, thereby showing that it is subterminal.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109935"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000187082400450X/pdfft?md5=7430145ca98feac2b6b24320a9ad17ce&pid=1-s2.0-S000187082400450X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082400450X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A symmetric tensor category over an algebraically closed field k is called incompressible if its objects have finite length ( is pretannakian) and every tensor functor out of is an embedding of a tensor subcategory. E.g., the categories , of vector and supervector spaces are incompressible. Moreover, by Deligne's theorem [15], if then any tensor category of moderate growth uniquely fibres over . This implies that , are the only incompressible categories over k in this class, and perhaps altogether, as we expect that all incompressible categories have moderate growth.
Similarly, in characteristic , we also have incompressible Verlinde categories , and by [10] any Frobenius exact category of moderate growth uniquely fibres over , meaning that, in this class, the above categories are the only incompressible ones. More generally, the Verlinde categories , , introduced in [3], [7] are incompressible, and a key conjecture is that every tensor category of moderate growth uniquely fibres over . This would make the above the only incompressible categories in this class (and perhaps altogether).
We prove a part of this conjecture, showing that every tensor category of moderate growth fibres over an incompressible one. So it remains to understand incompressible categories, and we prove several results in this direction. Namely, let -Tann be the category of tensor categories that fibre over . Then we say that is subterminal if it is a terminal object of -Tann (i.e., fibre functors to are unique when exist), and that is a Bezrukavnikov category if -Tann is closed under taking images of tensor functors (=quotient categories). Clearly, a subterminal Bezrukavnikov category is incompressible, and we conjecture that the converse also holds; for instance, tensor subcategories of are known to be subterminal. We prove that furthermore they are Bezrukavnikov categories, generalizing the result of Bezrukavnikov [4] in the case of . Finally, we show that a tensor subcategory of a finite incompressible category is incompressible.
We also find intrinsic sufficient conditions for incompressibility and subterminality. Namely, is called maximally nilpotent if the growth rate of the length of the symmetric powers of every object is the minimal one theoretically possible. We show that a finite maximally nilpotent category is incompressible, and also subterminal if it satisfies an additional geometric reductivity condition (for every morphism in , there exists for which is split). Then we verify these conditions for the category , thereby showing that it is subterminal.
如果一个代数闭域 k 上的对称张量范畴 D 的对象是有限长的(D 是前张量的),而且 D 的每个张量函子都是一个张量子范畴的嵌入,那么这个范畴就叫做不可压缩范畴。例如,向量空间和超向量空间的范畴 Vec、sVec 就是不可压缩的。此外,根据德利涅定理[15],如果 char(k)=0 那么任何中等增长的张量范畴都唯一地纤维于 sVec。同样,在特征 p>0 中,我们也有不可压缩的韦林德范畴 Verp,Verp+,而根据[10],任何具有适度增长的弗罗贝尼斯精确范畴都唯一地纤维于 Verp,这意味着在这一类中,上述范畴是唯一不可压缩的范畴。更一般地说,[3]、[7]中引入的韦林德范畴Verpn、Verpn+、n≤∞都是不可压缩的,而一个关键猜想是,每个适度增长的张量范畴都唯一地纤维于Verp∞。我们证明了这一猜想的一部分,证明了每一个中等增长的张量范畴都会在一个不可压缩的范畴上形成纤维。我们证明了这一猜想的一部分,证明了每一个中度增长的张量范畴都纤维于不可压缩范畴。那么,如果 D 是 D-Tann 的终端对象(即 D 的纤维函子存在时是唯一的),我们就说 D 是子终端的;如果 D-Tann 在张量函子(=阶范畴)的取像下是封闭的,我们就说 D 是贝兹鲁卡夫尼科夫范畴。显然,一个亚终端贝兹鲁卡夫尼科夫范畴是不可压缩的,我们猜想反过来也成立;例如,众所周知,Verp 的张量子范畴是亚终端的。我们进一步证明它们是贝兹鲁卡夫尼科夫范畴,这是对贝兹鲁卡夫尼科夫(Bezrukavnikov)[4] 在 Vec 范畴中的结果的推广。最后,我们证明了有限不可压缩范畴的张量子范畴是不可压缩的。也就是说,如果每个对象的对称幂的长度增长率是理论上可能的最小值,那么D就被称为最大无穷范畴。我们证明,一个有限的最大无穷范畴是不可压缩的,而且如果它满足一个附加的几何还原性条件(对于D中的每一个态X↠1,都存在n>0,而SymnX↠1是分裂的),它也是亚极限的。然后,我们验证这些条件对 Ver2n 类别的适用性,从而证明它是子终结的。
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.