Genus zero transverse foliations for weakly convex Reeb flows on the tight 3-sphere

IF 1.5 1区 数学 Q1 MATHEMATICS
Naiara V. de Paulo , Umberto Hryniewicz , Seongchan Kim , Pedro A.S. Salomão
{"title":"Genus zero transverse foliations for weakly convex Reeb flows on the tight 3-sphere","authors":"Naiara V. de Paulo ,&nbsp;Umberto Hryniewicz ,&nbsp;Seongchan Kim ,&nbsp;Pedro A.S. Salomão","doi":"10.1016/j.aim.2024.109909","DOIUrl":null,"url":null,"abstract":"<div><p>A contact form on the tight 3-sphere <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> is called weakly convex if the Conley-Zehnder index of every Reeb orbit is at least 2. In this article, we study Reeb flows of weakly convex contact forms on <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> admitting a prescribed finite set of index-2 Reeb orbits, which are all hyperbolic and mutually unlinked. We present conditions so that these index-2 orbits are binding orbits of a genus zero transverse foliation whose additional binding orbits have index 3. In addition, we show in the real-analytic case that the topological entropy of the Reeb flow is positive if the branches of the stable/unstable manifolds of the index-2 orbits are mutually non-coincident.</p></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"457 ","pages":"Article 109909"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824004249/pdfft?md5=f4345f01030ab23c2fdfe8102aa8fbb7&pid=1-s2.0-S0001870824004249-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004249","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A contact form on the tight 3-sphere (S3,ξ0) is called weakly convex if the Conley-Zehnder index of every Reeb orbit is at least 2. In this article, we study Reeb flows of weakly convex contact forms on (S3,ξ0) admitting a prescribed finite set of index-2 Reeb orbits, which are all hyperbolic and mutually unlinked. We present conditions so that these index-2 orbits are binding orbits of a genus zero transverse foliation whose additional binding orbits have index 3. In addition, we show in the real-analytic case that the topological entropy of the Reeb flow is positive if the branches of the stable/unstable manifolds of the index-2 orbits are mutually non-coincident.

紧3球上弱凸里布流的零属横切面
如果每个里布轨道的康利-泽恩德指数(Conley-Zehnder index)至少为 2,则紧 3 球(S3,ξ0)上的接触形式被称为弱凸。本文研究了(S3,ξ0)上弱凸接触形式的里布流,该接触形式允许一组指数为 2 的有限里布轨道,这些轨道都是双曲的且互不相连。我们提出了条件,使这些指数-2 轨道成为零属横折面的结合轨道,其附加结合轨道的指数为 3。此外,我们在实解析情况下证明,如果索引-2 轨道的稳定/不稳定流形的分支互不重合,则里布流的拓扑熵为正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信