CMRVAE: Contrastive margin-restrained variational auto-encoder for class-separated domain adaptation in cardiac segmentation

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lihong Qiao , Rui Wang , Yucheng Shu , Bin Xiao , Xidong Xu , Baobin Li , Le Yang , Weisheng Li , Xinbo Gao , Baiying Lei
{"title":"CMRVAE: Contrastive margin-restrained variational auto-encoder for class-separated domain adaptation in cardiac segmentation","authors":"Lihong Qiao ,&nbsp;Rui Wang ,&nbsp;Yucheng Shu ,&nbsp;Bin Xiao ,&nbsp;Xidong Xu ,&nbsp;Baobin Li ,&nbsp;Le Yang ,&nbsp;Weisheng Li ,&nbsp;Xinbo Gao ,&nbsp;Baiying Lei","doi":"10.1016/j.knosys.2024.112412","DOIUrl":null,"url":null,"abstract":"<div><p>Unsupervised Domain Adaptation (UDA) is a promising strategy for representing unlabeled data through domain alignment. Nonetheless, a considerable number of whole-domain alignment techniques often neglect the essential interconnections between pixels and patches across distinct domains that exhibit analogous semantic characteristics. This oversight can hinder their ability to manage semantic variations across domains and to create a discriminative embedding for different classes, ultimately leading to reduced discrimination and poor generalization. This paper presents a novel UDA method for medical image analysis, termed CMRVAE. The proposed method is composed of a margin-restrained variational auto-encoder (MR-VAE) and a class-separation patch-level manifold clustering (CPMC) module. The MR-VAE embeds an adaptive margin-based enhancement technique through an innovative variational inference for optimal encoder mapping in UDA. The CPMC module integrates multi-granularity class information into the manifold for improved preparatory work before UDA. Experimental results on three cardiac datasets show that the proposed method achieves substantially enhanced accuracy compared to the state-of-the-art unsupervised approaches.</p></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124010463","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised Domain Adaptation (UDA) is a promising strategy for representing unlabeled data through domain alignment. Nonetheless, a considerable number of whole-domain alignment techniques often neglect the essential interconnections between pixels and patches across distinct domains that exhibit analogous semantic characteristics. This oversight can hinder their ability to manage semantic variations across domains and to create a discriminative embedding for different classes, ultimately leading to reduced discrimination and poor generalization. This paper presents a novel UDA method for medical image analysis, termed CMRVAE. The proposed method is composed of a margin-restrained variational auto-encoder (MR-VAE) and a class-separation patch-level manifold clustering (CPMC) module. The MR-VAE embeds an adaptive margin-based enhancement technique through an innovative variational inference for optimal encoder mapping in UDA. The CPMC module integrates multi-granularity class information into the manifold for improved preparatory work before UDA. Experimental results on three cardiac datasets show that the proposed method achieves substantially enhanced accuracy compared to the state-of-the-art unsupervised approaches.

CMRVAE: 对比边际约束变异自动编码器,用于心脏分割中的类分离域适应
无监督域自适应(UDA)是通过域对齐来表示无标记数据的一种有前途的策略。然而,相当多的全域配准技术往往忽略了不同域中表现出类似语义特征的像素和斑块之间的重要相互联系。这种疏忽会阻碍它们管理跨域语义变化和为不同类别创建区分性嵌入的能力,最终导致区分度降低和泛化效果不佳。本文提出了一种用于医学图像分析的新型 UDA 方法,称为 CMRVAE。该方法由一个边际约束变异自动编码器(MR-VAE)和一个类别分离斑块级流形聚类(CPMC)模块组成。MR-VAE 通过创新的变分推理,在 UDA 中嵌入了基于边际的自适应增强技术,以优化编码器映射。CPMC 模块将多粒度类别信息整合到流形中,以改进 UDA 前的准备工作。在三个心脏数据集上的实验结果表明,与最先进的无监督方法相比,所提出的方法大大提高了准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信