{"title":"HOXA1 promotes epithelial-mesenchymal transition and malignant characteristics of laryngeal squamous cell carcinoma","authors":"Jun Wu, Xiaofeng Gu","doi":"10.1016/j.mrfmmm.2024.111882","DOIUrl":null,"url":null,"abstract":"<div><p>Despite considerable advancements in the diagnosis and treatment of LSCC, there has been no significant improvement in survival rate. Consequently, identifying molecular targets for this cancer is of paramount importance. HOXA1, a constituent of the homeobox transcription factor cluster, plays a role in the development of various types of cancer. Nevertheless, the specific function and mechanism of HOXA1 in LSCC remains unclear. This study aimed to clarify the impact of HOXA1 on the advancement of LSCC and uncover its underlying mechanism. Our findings indicate that HOXA1 exhibits a significantly elevated expression level in LSCC. Suppression of HOXA1 inhibited the proliferation of LSCC cells. Furthermore, the ablation of HOXA1 triggered the apoptosis of LSCC cells and inhibited EMT. Functionally, HOXA1 has a role in initiating the activation of the PI3K/AKT/mTOR pathway in LSCC cells. In summary, HOXA1 significantly contributes to the EMT of LSCC cells via the PI3K/AKT/mTOR signaling pathway, thereby facilitating the proliferation and motility of LSCC cells. Consequently, HOXA1 presents itself as a viable therapeutic target for LSCC interventions.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"829 ","pages":"Article 111882"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510724000320","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite considerable advancements in the diagnosis and treatment of LSCC, there has been no significant improvement in survival rate. Consequently, identifying molecular targets for this cancer is of paramount importance. HOXA1, a constituent of the homeobox transcription factor cluster, plays a role in the development of various types of cancer. Nevertheless, the specific function and mechanism of HOXA1 in LSCC remains unclear. This study aimed to clarify the impact of HOXA1 on the advancement of LSCC and uncover its underlying mechanism. Our findings indicate that HOXA1 exhibits a significantly elevated expression level in LSCC. Suppression of HOXA1 inhibited the proliferation of LSCC cells. Furthermore, the ablation of HOXA1 triggered the apoptosis of LSCC cells and inhibited EMT. Functionally, HOXA1 has a role in initiating the activation of the PI3K/AKT/mTOR pathway in LSCC cells. In summary, HOXA1 significantly contributes to the EMT of LSCC cells via the PI3K/AKT/mTOR signaling pathway, thereby facilitating the proliferation and motility of LSCC cells. Consequently, HOXA1 presents itself as a viable therapeutic target for LSCC interventions.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.