Ling Du , Peipei Gao , Zhuang Liu , Nan Yin , Xiaochao Wang
{"title":"TMODINET: A trustworthy multi-omics dynamic learning integration network for cancer diagnostic","authors":"Ling Du , Peipei Gao , Zhuang Liu , Nan Yin , Xiaochao Wang","doi":"10.1016/j.compbiolchem.2024.108202","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple types of omics data contain a wealth of biomedical information which reflect different aspects of clinical samples. Multi-omics integrated analysis is more likely to lead to more accurate clinical decisions. Existing cancer diagnostic methods based on multi-omics data integration mainly focus on the classification accuracy of the model, while neglecting the interpretability of the internal mechanism and the reliability of the results, which are crucial in specific domains such as precision medicine and the life sciences. To overcome this limitation, we propose a trustworthy multi-omics dynamic learning framework (TMODINET) for cancer diagnostic. The framework employs multi-omics adaptive dynamic learning to process each sample to provide patient-centered personality diagnosis by using self-attentional learning of features and modalities. To characterize the correlation between samples well, we introduce a graph dynamic learning method which can adaptively adjust the graph structure according to the specific classification results for specific graph convolutional networks (GCN) learning. Moreover, we utilize an uncertainty mechanism by employing Dirichlet distribution and Dempster–Shafer theory to obtain uncertainty and integrate multi-omics data at the decision level, ensuring trustworthy for cancer diagnosis. Extensive experiments on four real-world multimodal medical datasets are conducted. Compared to state-of-the-art methods, the superior performance and trustworthiness of our proposed algorithm are clearly validated. Our model has great potential for clinical diagnosis.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108202"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001907","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple types of omics data contain a wealth of biomedical information which reflect different aspects of clinical samples. Multi-omics integrated analysis is more likely to lead to more accurate clinical decisions. Existing cancer diagnostic methods based on multi-omics data integration mainly focus on the classification accuracy of the model, while neglecting the interpretability of the internal mechanism and the reliability of the results, which are crucial in specific domains such as precision medicine and the life sciences. To overcome this limitation, we propose a trustworthy multi-omics dynamic learning framework (TMODINET) for cancer diagnostic. The framework employs multi-omics adaptive dynamic learning to process each sample to provide patient-centered personality diagnosis by using self-attentional learning of features and modalities. To characterize the correlation between samples well, we introduce a graph dynamic learning method which can adaptively adjust the graph structure according to the specific classification results for specific graph convolutional networks (GCN) learning. Moreover, we utilize an uncertainty mechanism by employing Dirichlet distribution and Dempster–Shafer theory to obtain uncertainty and integrate multi-omics data at the decision level, ensuring trustworthy for cancer diagnosis. Extensive experiments on four real-world multimodal medical datasets are conducted. Compared to state-of-the-art methods, the superior performance and trustworthiness of our proposed algorithm are clearly validated. Our model has great potential for clinical diagnosis.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.