Xiong Zhang , Jiaying Yang , Yini Lu , Yi Liu , Tianyin Wang , Feng Yu
{"title":"Human Urinary Kallidinogenase improves vascular endothelial injury by activating the Nrf2/HO-1 signaling pathway","authors":"Xiong Zhang , Jiaying Yang , Yini Lu , Yi Liu , Tianyin Wang , Feng Yu","doi":"10.1016/j.cbi.2024.111230","DOIUrl":null,"url":null,"abstract":"<div><p>Vascular endothelial injury is closely related to the progression of various cardio-cerebrovascular diseases. Whether Human Urinary Kallidinogenase (HUK) has a protective effect on endothelial injury remains unclear. This study established an <em>in vivo</em> model of rat common carotid artery intima injury and an <em>in vitro</em> model of human umbilical vein endothelial cell (HUVECs) injury induced by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). To explore the protective effect and mechanism of HUK on endothelial injury. <em>In vivo</em>, HUK can reduce the hyperplasia and lumen stenosis of rat common carotid artery after intimal injury, and promote the fluorescence expression of vWF in the common carotid artery. HUK also activated the Nrf2/HO-1 signaling pathway in rat common carotid artery tissue to reduce endothelial damage. <em>In vitro</em>, HUK can inhibit the H<sub>2</sub>O<sub>2</sub>-induced decline in HUVECs activity, improve the migration ability of HUVECs induced by H<sub>2</sub>O<sub>2</sub>, inhibit the apoptosis and necrosis of HUVECs and the generation of ROS, and regulate the expression of VEGFA, ET-1 and eNOS proteins related to endothelial function in cells. The Nrf2/HO-1 signaling pathway is activated, and the HO-1 specific inhibitor zinc porphyrin (ZnPP) can partially reverse the protective effect of HUK on H<sub>2</sub>O<sub>2</sub>-induced HUVECs injury in terms of cell migration, necrosis and oxidative stress. The Nrf2/HO-1 signaling pathway plays an important role in the regulation of migration, necrosis and oxidative stress of HUVECs cells. HUK has a protective effect on vascular endothelial injury. HUK can inhibit oxidative stress and apoptotic necrosis by activating Nrf2/HO-1 signaling pathway.</p></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"403 ","pages":"Article 111230"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279724003764","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular endothelial injury is closely related to the progression of various cardio-cerebrovascular diseases. Whether Human Urinary Kallidinogenase (HUK) has a protective effect on endothelial injury remains unclear. This study established an in vivo model of rat common carotid artery intima injury and an in vitro model of human umbilical vein endothelial cell (HUVECs) injury induced by hydrogen peroxide (H2O2). To explore the protective effect and mechanism of HUK on endothelial injury. In vivo, HUK can reduce the hyperplasia and lumen stenosis of rat common carotid artery after intimal injury, and promote the fluorescence expression of vWF in the common carotid artery. HUK also activated the Nrf2/HO-1 signaling pathway in rat common carotid artery tissue to reduce endothelial damage. In vitro, HUK can inhibit the H2O2-induced decline in HUVECs activity, improve the migration ability of HUVECs induced by H2O2, inhibit the apoptosis and necrosis of HUVECs and the generation of ROS, and regulate the expression of VEGFA, ET-1 and eNOS proteins related to endothelial function in cells. The Nrf2/HO-1 signaling pathway is activated, and the HO-1 specific inhibitor zinc porphyrin (ZnPP) can partially reverse the protective effect of HUK on H2O2-induced HUVECs injury in terms of cell migration, necrosis and oxidative stress. The Nrf2/HO-1 signaling pathway plays an important role in the regulation of migration, necrosis and oxidative stress of HUVECs cells. HUK has a protective effect on vascular endothelial injury. HUK can inhibit oxidative stress and apoptotic necrosis by activating Nrf2/HO-1 signaling pathway.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.