Jeske van Boxel , Rani R.J. Khargi , Sandra M. Nijmeijer , Manuel T. Heinzelmann , Daniel Da Costa Pereira , Marja H. Lamoree , Majorie B.M. van Duursen
{"title":"Effects of polystyrene micro- and nanoplastics on androgen- and estrogen receptor activity and steroidogenesis in vitro","authors":"Jeske van Boxel , Rani R.J. Khargi , Sandra M. Nijmeijer , Manuel T. Heinzelmann , Daniel Da Costa Pereira , Marja H. Lamoree , Majorie B.M. van Duursen","doi":"10.1016/j.tiv.2024.105938","DOIUrl":null,"url":null,"abstract":"<div><p>While many plastic additives show endocrine disrupting properties, this has not been studied for micro- and nanoplastics (MNPs) particles despite their ubiquitous presence in humans. The objective of this study was to determine the effects of various sizes and concentrations of polystyrene (PS)-MNPs (50–10,000 nm, 0.01–100 μg/mL) on estrogen- and androgen receptor (ER and AR) activity and steroidogenesis <em>in vitro</em>. Fluorescent (F)PS-MNPs of ≤1000 nm were internalized in VM7 and H295R cells and FPS-MNPs ≤200 nm in AR-ecoscreen cells. H295R cells displayed the highest uptake and particles were closer to the nucleus than other cell types. None of the sizes and concentrations PS-MNPs tested affected ER or AR activity. In H295R cells, PS-MNPs caused some statistically significant changes in hormone levels, though these showed no apparent concentration or size-dependent patterns. Additionally, PS-MNPs caused a decrease in estriol (E3) with a maximum of 37.5 % (100 μg/mL, 50 nm) and an increase in gene expression of oxidative stress markers GPX1 (1.26-fold) and SOD1 (1.23-fold). Taken together, our data show limited endocrine-disrupting properties of PS-MNPs <em>in vitro</em>. Nevertheless the importance of E3 in the placenta warrants further studies in the potential effects of MNPs during pregnancy.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"101 ","pages":"Article 105938"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0887233324001681/pdfft?md5=4ec13720471a591225d5aefbd853a820&pid=1-s2.0-S0887233324001681-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324001681","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While many plastic additives show endocrine disrupting properties, this has not been studied for micro- and nanoplastics (MNPs) particles despite their ubiquitous presence in humans. The objective of this study was to determine the effects of various sizes and concentrations of polystyrene (PS)-MNPs (50–10,000 nm, 0.01–100 μg/mL) on estrogen- and androgen receptor (ER and AR) activity and steroidogenesis in vitro. Fluorescent (F)PS-MNPs of ≤1000 nm were internalized in VM7 and H295R cells and FPS-MNPs ≤200 nm in AR-ecoscreen cells. H295R cells displayed the highest uptake and particles were closer to the nucleus than other cell types. None of the sizes and concentrations PS-MNPs tested affected ER or AR activity. In H295R cells, PS-MNPs caused some statistically significant changes in hormone levels, though these showed no apparent concentration or size-dependent patterns. Additionally, PS-MNPs caused a decrease in estriol (E3) with a maximum of 37.5 % (100 μg/mL, 50 nm) and an increase in gene expression of oxidative stress markers GPX1 (1.26-fold) and SOD1 (1.23-fold). Taken together, our data show limited endocrine-disrupting properties of PS-MNPs in vitro. Nevertheless the importance of E3 in the placenta warrants further studies in the potential effects of MNPs during pregnancy.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.