Serum CIAPIN1 is lower in septic patients with cardiac dysfunction

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nongzhang Xu , Cuihong Wang , Jianwei Wan , Lin Chen
{"title":"Serum CIAPIN1 is lower in septic patients with cardiac dysfunction","authors":"Nongzhang Xu ,&nbsp;Cuihong Wang ,&nbsp;Jianwei Wan ,&nbsp;Lin Chen","doi":"10.1016/j.peptides.2024.171295","DOIUrl":null,"url":null,"abstract":"<div><p>The study aimed to investigate the clinical significance of serum cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and its potential impact on cardiac dysfunction and inflammatory response induced by sepsis. A cross-sectional study was conducted in an intensive care unit (ICU) involving 80 healthy individuals and 95 severe sepsis patients. The data were analyzed to establish the correlation between CIAPIN1 levels and the onset of cardiac dysfunction in patients with sepsis. The associations have been established by the Pearson correlation test, one-way ANOVA, Bonferroni post hoc test, and plotting the receiver operating characteristic (ROC). H9c2 cells were treated with LPS (1 μg/mL) for 24 h to establish an <em>in vitro</em> model of septic cardiomyopathy. Meanwhile, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were detected by enzyme-linked immunosorbent assay (ELISA). Serum CIAPIN1 levels were considerably lower in sepsis patients with cardiac dysfunction. CIAPIN1 expression levels were negatively correlated with TNF-α (r = −0.476, P&lt;0.001), IL-1β (r = −0.584, P&lt;0.001), IL-6 (r = −0.618, P&lt;0.001), creatine kinase- MB (CK-MB) (r = −0.454, P&lt;0.001), and high-sensitive cardiac troponin T (hs-cTnT) (r = −0.586, P&lt;0.001). The ROC curve showed that CIAPIN1 significantly identify sepsis patients from healthy individuals. CIAPIN1 knockdown decreases cardiomyocyte proliferation and increases apoptosis induced by LPS. In addition, CIAPIN1 knockdown reduced cardiac dysfunction and increased inflammatory response in H9c2 rat cardiomyocytes. CIAPIN1 could be a potential biomarker for detecting sepsis patients and suppressing CIAPIN1 expression in H9c2 rat cardiomyocytes, attenuating sepsis-induced cardiac dysfunction.</p></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"181 ","pages":"Article 171295"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196978124001487/pdfft?md5=515696ee0f021d242d6e326dd50e4496&pid=1-s2.0-S0196978124001487-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196978124001487","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study aimed to investigate the clinical significance of serum cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and its potential impact on cardiac dysfunction and inflammatory response induced by sepsis. A cross-sectional study was conducted in an intensive care unit (ICU) involving 80 healthy individuals and 95 severe sepsis patients. The data were analyzed to establish the correlation between CIAPIN1 levels and the onset of cardiac dysfunction in patients with sepsis. The associations have been established by the Pearson correlation test, one-way ANOVA, Bonferroni post hoc test, and plotting the receiver operating characteristic (ROC). H9c2 cells were treated with LPS (1 μg/mL) for 24 h to establish an in vitro model of septic cardiomyopathy. Meanwhile, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were detected by enzyme-linked immunosorbent assay (ELISA). Serum CIAPIN1 levels were considerably lower in sepsis patients with cardiac dysfunction. CIAPIN1 expression levels were negatively correlated with TNF-α (r = −0.476, P<0.001), IL-1β (r = −0.584, P<0.001), IL-6 (r = −0.618, P<0.001), creatine kinase- MB (CK-MB) (r = −0.454, P<0.001), and high-sensitive cardiac troponin T (hs-cTnT) (r = −0.586, P<0.001). The ROC curve showed that CIAPIN1 significantly identify sepsis patients from healthy individuals. CIAPIN1 knockdown decreases cardiomyocyte proliferation and increases apoptosis induced by LPS. In addition, CIAPIN1 knockdown reduced cardiac dysfunction and increased inflammatory response in H9c2 rat cardiomyocytes. CIAPIN1 could be a potential biomarker for detecting sepsis patients and suppressing CIAPIN1 expression in H9c2 rat cardiomyocytes, attenuating sepsis-induced cardiac dysfunction.

有心脏功能障碍的脓毒症患者血清中的 CIAPIN1 含量较低。
该研究旨在探讨血清细胞因子诱导细胞凋亡抑制因子 1(CIAPIN1)的临床意义及其对脓毒症诱发的心脏功能障碍和炎症反应的潜在影响。一项横断面研究在重症监护室(ICU)进行,涉及 80 名健康人和 95 名严重败血症患者。研究人员对数据进行了分析,以确定 CIAPIN1 水平与脓毒症患者开始出现心功能障碍之间的相关性。通过皮尔逊相关性检验、单因素方差分析、Bonferroni事后检验和绘制接收者操作特征曲线(ROC)确定了两者之间的关联。用LPS(1微克/毫升)处理H9c2细胞24小时,以建立脓毒性心肌病的体外模型。同时用酶联免疫吸附试验(ELISA)检测肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)和白细胞介素-1β(IL-1β)。有心脏功能障碍的脓毒症患者血清中的 CIAPIN1 水平明显较低。CIAPIN1 的表达水平与 TNF-α 呈负相关(r = -0.476,P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Peptides
Peptides 医学-生化与分子生物学
CiteScore
6.40
自引率
6.70%
发文量
130
审稿时长
28 days
期刊介绍: Peptides is an international journal presenting original contributions on the biochemistry, physiology and pharmacology of biological active peptides, as well as their functions that relate to gastroenterology, endocrinology, and behavioral effects. Peptides emphasizes all aspects of high profile peptide research in mammals and non-mammalian vertebrates. Special consideration can be given to plants and invertebrates. Submission of articles with clinical relevance is particularly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信