Key subdomains of mesencephalic astrocyte-derived neurotrophic factor attenuate myocardial ischemia/reperfusion injury by JAK1/STAT1/NF-κB signaling pathway.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Haibin Dong, Wenjuan Jia, Chunxiao Wang, Da Teng, Bowen Xu, Xiaoning Ding, Jun Yang, Lin Zhong, Lei Gong
{"title":"Key subdomains of mesencephalic astrocyte-derived neurotrophic factor attenuate myocardial ischemia/reperfusion injury by JAK1/STAT1/NF-κB signaling pathway.","authors":"Haibin Dong, Wenjuan Jia, Chunxiao Wang, Da Teng, Bowen Xu, Xiaoning Ding, Jun Yang, Lin Zhong, Lei Gong","doi":"10.1186/s10020-024-00916-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myocardial ischemia/reperfusion (I/R) injury is a common pathological process in clinical practice. Developing effective therapeutic strategies to reduce or prevent this injury is crucial. The article aimed to investigate the role and mechanism of mesencephalic astrocyte-derived neurotrophic factor (MANF) and its key subdomains in modulating myocardial I/R-induced cardiomyocyte apoptosis.</p><p><strong>Methods: </strong>MANF stable knockout cell line and MANF mutant overexpression plasmids were constructed. The effects of MANF and mutants on apoptosis and endoplasmic reticulum (ER) stress related proteins were evaluated in hypoxia/reoxygenation-induced HL-1 cardiomyocytes by western blot, immunofluorescence, Tunel and flow cytometry. Echocardiography, ELISA, TTC and Masson were used to observe the effects of recombinant MANF protein (rMANF) on cardiac function in myocardial I/R mice.</p><p><strong>Results: </strong>This study observed increased expression of MANF in both myocardial infarction patients and I/R mice. MANF overexpression in cardiomyocytes decreased ER stress-induced apoptosis, while MANF knockout exacerbated it. rMANF improved cardiac function in I/R mice by reducing injury and inflammation. This study specifically demonstrates that mutations in the α-helix of MANF were more effective in reducing ER stress and cardiomyocyte apoptosis. Mechanistically, MANF and the α-helix mutant attenuated I/R injury by inhibiting the JAK1/STAT1/NF-κB signaling pathway in addition to reducing ER stress-induced apoptosis.</p><p><strong>Conclusion: </strong>These findings highlight MANF and its subdomains as critical regulators of myocardial I/R injury, offering promising therapeutic targets with significant clinical implications for I/R-related diseases.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00916-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathological process in clinical practice. Developing effective therapeutic strategies to reduce or prevent this injury is crucial. The article aimed to investigate the role and mechanism of mesencephalic astrocyte-derived neurotrophic factor (MANF) and its key subdomains in modulating myocardial I/R-induced cardiomyocyte apoptosis.

Methods: MANF stable knockout cell line and MANF mutant overexpression plasmids were constructed. The effects of MANF and mutants on apoptosis and endoplasmic reticulum (ER) stress related proteins were evaluated in hypoxia/reoxygenation-induced HL-1 cardiomyocytes by western blot, immunofluorescence, Tunel and flow cytometry. Echocardiography, ELISA, TTC and Masson were used to observe the effects of recombinant MANF protein (rMANF) on cardiac function in myocardial I/R mice.

Results: This study observed increased expression of MANF in both myocardial infarction patients and I/R mice. MANF overexpression in cardiomyocytes decreased ER stress-induced apoptosis, while MANF knockout exacerbated it. rMANF improved cardiac function in I/R mice by reducing injury and inflammation. This study specifically demonstrates that mutations in the α-helix of MANF were more effective in reducing ER stress and cardiomyocyte apoptosis. Mechanistically, MANF and the α-helix mutant attenuated I/R injury by inhibiting the JAK1/STAT1/NF-κB signaling pathway in addition to reducing ER stress-induced apoptosis.

Conclusion: These findings highlight MANF and its subdomains as critical regulators of myocardial I/R injury, offering promising therapeutic targets with significant clinical implications for I/R-related diseases.

间脑星形胶质细胞源性神经营养因子的关键亚域通过 JAK1/STAT1/NF-κB 信号通路减轻心肌缺血再灌注损伤
背景:心肌缺血/再灌注(I/R)损伤是临床实践中常见的病理过程。开发有效的治疗策略以减轻或预防这种损伤至关重要。本文旨在研究间脑星形胶质细胞源性神经营养因子(MANF)及其关键亚域在调节心肌I/R诱导的心肌细胞凋亡中的作用和机制:方法:构建MANF稳定敲除细胞系和MANF突变体过表达质粒。方法:通过Western印迹、免疫荧光、Tunel和流式细胞术评估MANF和突变体对缺氧/复氧诱导的HL-1心肌细胞凋亡和内质网(ER)应激相关蛋白的影响。利用超声心动图、ELISA、TTC 和 Masson 观察重组 MANF 蛋白(rMANF)对心肌 I/R 小鼠心脏功能的影响:结果:本研究观察到心肌梗死患者和心肌缺血/缺氧小鼠体内 MANF 的表达均有所增加。MANF在心肌细胞中的过表达减少了ER应激诱导的细胞凋亡,而MANF基因敲除则加剧了ER应激诱导的细胞凋亡。这项研究特别表明,MANF α-螺旋的突变在减少ER应激和心肌细胞凋亡方面更为有效。从机理上讲,MANF及其α-螺旋突变体除了能减少ER应激诱导的细胞凋亡外,还能通过抑制JAK1/STAT1/NF-κB信号通路减轻I/R损伤:这些发现强调了 MANF 及其亚域是心肌 I/R 损伤的关键调控因子,为 I/R 相关疾病提供了具有重大临床意义的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信