{"title":"Learning lifespan brain anatomical correspondence via cortical developmental continuity transfer","authors":"","doi":"10.1016/j.media.2024.103328","DOIUrl":null,"url":null,"abstract":"<div><p>Identifying anatomical correspondences in the human brain throughout the lifespan is an essential prerequisite for studying brain development and aging. But given the tremendous individual variability in cortical folding patterns, the heterogeneity of different neurodevelopmental stages, and the scarce of neuroimaging data, it is difficult to infer reliable lifespan anatomical correspondence at finer scales. To solve this problem, in this work, we take the advantage of the developmental continuity of the cerebral cortex and propose a novel transfer learning strategy: the model is trained from scratch using the age group with the largest sample size, and then is transferred and adapted to the other groups following the cortical developmental trajectory. A novel loss function is designed to ensure that during the transfer process the common patterns will be extracted and preserved, while the group-specific new patterns will be captured. The proposed framework was evaluated using multiple datasets covering four lifespan age groups with 1,000+ brains (from 34 gestational weeks to young adult). Our experimental results show that: 1) the proposed transfer strategy can dramatically improve the model performance on populations (e.g., early neurodevelopment) with very limited number of training samples; and 2) with the transfer learning we are able to robustly infer the complicated many-to-many anatomical correspondences among different brains at different neurodevelopmental stages. (Code will be released soon: <span><span>https://github.com/qidianzl/CDC-transfer</span><svg><path></path></svg></span>).</p></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524002536","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying anatomical correspondences in the human brain throughout the lifespan is an essential prerequisite for studying brain development and aging. But given the tremendous individual variability in cortical folding patterns, the heterogeneity of different neurodevelopmental stages, and the scarce of neuroimaging data, it is difficult to infer reliable lifespan anatomical correspondence at finer scales. To solve this problem, in this work, we take the advantage of the developmental continuity of the cerebral cortex and propose a novel transfer learning strategy: the model is trained from scratch using the age group with the largest sample size, and then is transferred and adapted to the other groups following the cortical developmental trajectory. A novel loss function is designed to ensure that during the transfer process the common patterns will be extracted and preserved, while the group-specific new patterns will be captured. The proposed framework was evaluated using multiple datasets covering four lifespan age groups with 1,000+ brains (from 34 gestational weeks to young adult). Our experimental results show that: 1) the proposed transfer strategy can dramatically improve the model performance on populations (e.g., early neurodevelopment) with very limited number of training samples; and 2) with the transfer learning we are able to robustly infer the complicated many-to-many anatomical correspondences among different brains at different neurodevelopmental stages. (Code will be released soon: https://github.com/qidianzl/CDC-transfer).
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.