Antoine Lamer , Benjamin Popoff , Boris Delange , Matthieu Doutreligne , Emmanuel Chazard , Romaric Marcilly , Sonia Priou , Paul Quindroit
{"title":"Barriers encountered with clinical data warehouses: Recommendations from a focus group","authors":"Antoine Lamer , Benjamin Popoff , Boris Delange , Matthieu Doutreligne , Emmanuel Chazard , Romaric Marcilly , Sonia Priou , Paul Quindroit","doi":"10.1016/j.cmpb.2024.108404","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><p>The increasing implementation and use of electronic health records over the last few decades has made a significant volume of clinical data being available. Over the past 20 years, hospitals have also adopted and implemented data warehouse technology to facilitate the reuse of administrative and clinical data for research. However, the implementation of clinical data warehouses encounters a set of barriers: ethical, legislative, technical, human and organizational. This paper proposes an overview of difficulties and barriers encountered during a clinical data warehouse (CDW) development and implementation project.</p></div><div><h3>Methods</h3><p>We conducted a focus group at the 2023 Medical Informatics Europe Conference and invited professionals involved in the implementation of CDW. These experts described their CDW and the difficulties and barriers they encountered at each phase: (i) launching of the data warehouse project, (ii) implementing the data warehouse and (iii) using a data warehouse in routine operations. They were also asked to propose solutions they were able to implement to address the barriers previously reported.</p></div><div><h3>Results</h3><p>After synthesis and consensus, a total of 26 barriers were identified, 10 pertained to tasks, 5 to tools and technologies, 4 to persons, 4 to organization, and 3 to the external environment. To address these challenges, a set of 15 practical recommendations was offered, covering essential aspects such as governance, stakeholder engagement, interdisciplinary collaboration, and external expertise utilization.</p></div><div><h3>Conclusions</h3><p>These recommendations serve as a valuable resource for healthcare institutions seeking to establish and optimize CDWs, offering a roadmap for leveraging clinical data for research, quality enhancement, and improved patient care.</p></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"256 ","pages":"Article 108404"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724003973","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
The increasing implementation and use of electronic health records over the last few decades has made a significant volume of clinical data being available. Over the past 20 years, hospitals have also adopted and implemented data warehouse technology to facilitate the reuse of administrative and clinical data for research. However, the implementation of clinical data warehouses encounters a set of barriers: ethical, legislative, technical, human and organizational. This paper proposes an overview of difficulties and barriers encountered during a clinical data warehouse (CDW) development and implementation project.
Methods
We conducted a focus group at the 2023 Medical Informatics Europe Conference and invited professionals involved in the implementation of CDW. These experts described their CDW and the difficulties and barriers they encountered at each phase: (i) launching of the data warehouse project, (ii) implementing the data warehouse and (iii) using a data warehouse in routine operations. They were also asked to propose solutions they were able to implement to address the barriers previously reported.
Results
After synthesis and consensus, a total of 26 barriers were identified, 10 pertained to tasks, 5 to tools and technologies, 4 to persons, 4 to organization, and 3 to the external environment. To address these challenges, a set of 15 practical recommendations was offered, covering essential aspects such as governance, stakeholder engagement, interdisciplinary collaboration, and external expertise utilization.
Conclusions
These recommendations serve as a valuable resource for healthcare institutions seeking to establish and optimize CDWs, offering a roadmap for leveraging clinical data for research, quality enhancement, and improved patient care.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.