Hongyu Lai, Kaiye Gao, Meiyan Li, Tao Li, Xiaodong Zhou, Xingtao Zhou, Hui Guo, Bo Fu
{"title":"Handling missing data and measurement error for early-onset myopia risk prediction models.","authors":"Hongyu Lai, Kaiye Gao, Meiyan Li, Tao Li, Xiaodong Zhou, Xingtao Zhou, Hui Guo, Bo Fu","doi":"10.1186/s12874-024-02319-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early identification of children at high risk of developing myopia is essential to prevent myopia progression by introducing timely interventions. However, missing data and measurement error (ME) are common challenges in risk prediction modelling that can introduce bias in myopia prediction.</p><p><strong>Methods: </strong>We explore four imputation methods to address missing data and ME: single imputation (SI), multiple imputation under missing at random (MI-MAR), multiple imputation with calibration procedure (MI-ME), and multiple imputation under missing not at random (MI-MNAR). We compare four machine-learning models (Decision Tree, Naive Bayes, Random Forest, and Xgboost) and three statistical models (logistic regression, stepwise logistic regression, and least absolute shrinkage and selection operator logistic regression) in myopia risk prediction. We apply these models to the Shanghai Jinshan Myopia Cohort Study and also conduct a simulation study to investigate the impact of missing mechanisms, the degree of ME, and the importance of predictors on model performance. Model performance is evaluated using the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC).</p><p><strong>Results: </strong>Our findings indicate that in scenarios with missing data and ME, using MI-ME in combination with logistic regression yields the best prediction results. In scenarios without ME, employing MI-MAR to handle missing data outperforms SI regardless of the missing mechanisms. When ME has a greater impact on prediction than missing data, the relative advantage of MI-MAR diminishes, and MI-ME becomes more superior. Furthermore, our results demonstrate that statistical models exhibit better prediction performance than machine-learning models.</p><p><strong>Conclusion: </strong>MI-ME emerges as a reliable method for handling missing data and ME in important predictors for early-onset myopia risk prediction.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"24 1","pages":"194"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02319-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Early identification of children at high risk of developing myopia is essential to prevent myopia progression by introducing timely interventions. However, missing data and measurement error (ME) are common challenges in risk prediction modelling that can introduce bias in myopia prediction.
Methods: We explore four imputation methods to address missing data and ME: single imputation (SI), multiple imputation under missing at random (MI-MAR), multiple imputation with calibration procedure (MI-ME), and multiple imputation under missing not at random (MI-MNAR). We compare four machine-learning models (Decision Tree, Naive Bayes, Random Forest, and Xgboost) and three statistical models (logistic regression, stepwise logistic regression, and least absolute shrinkage and selection operator logistic regression) in myopia risk prediction. We apply these models to the Shanghai Jinshan Myopia Cohort Study and also conduct a simulation study to investigate the impact of missing mechanisms, the degree of ME, and the importance of predictors on model performance. Model performance is evaluated using the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC).
Results: Our findings indicate that in scenarios with missing data and ME, using MI-ME in combination with logistic regression yields the best prediction results. In scenarios without ME, employing MI-MAR to handle missing data outperforms SI regardless of the missing mechanisms. When ME has a greater impact on prediction than missing data, the relative advantage of MI-MAR diminishes, and MI-ME becomes more superior. Furthermore, our results demonstrate that statistical models exhibit better prediction performance than machine-learning models.
Conclusion: MI-ME emerges as a reliable method for handling missing data and ME in important predictors for early-onset myopia risk prediction.
期刊介绍:
BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.