{"title":"Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond.","authors":"Annette J Diao, Bonnie G Su, Seychelle M Vos","doi":"10.1016/j.jmb.2024.168779","DOIUrl":null,"url":null,"abstract":"<p><p>RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168779"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2024.168779","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.
RNA 聚合酶(Pol)II 受到高度调控,以确保适当的基因表达。早期转录延伸与 RNA Pol II 在启动子近端区域的短暂暂停有关。在多细胞生物中,这种暂停是由转录延伸因子 DRB 敏感性诱导因子(DSIF)和负延伸因子(NELF)联合稳定的。DSIF是一种广泛保守的转录伸长因子,而NELF则主要局限于元虫类。越来越多的证据表明,NELF 与 RNA Pol II 的结合是一种检查点,它可以使转录快速、高产地伸长,也可以使转录在启动子近端暂停位点过早终止。在此,我们根据数十年的细胞生物学、生物化学和结构工作总结了 NELF 在启动子近端暂停、转录终止、DNA 修复和信号转导中的作用,并介绍了未来的研究领域。
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.