{"title":"Exploring fluorinated heptose phosphate analogues as inhibitors of HldA and HldE, key enzymes in the biosynthesis of lipopolysaccharide","authors":"","doi":"10.1016/j.bioorg.2024.107767","DOIUrl":null,"url":null,"abstract":"<div><p>The growing threat of bacterial resistance to antibiotics has led to the rise of anti-virulence strategies as a promising approach. These strategies aim to disarm bacterial pathogens and improve their clearance by the host immune system. Lipopolysaccharide, a key virulence factor in Gram-negative bacteria, has been identified as a potential target for anti-virulence agents. In this study, we focus on inhibiting HldA and HldE, bacterial enzymes from the heptose biosynthesis pathway, which plays a key role in lipopolysaccharide biosynthesis. We present the synthesis of two fluorinated non-hydrolysable heptose phosphate analogues. Additionally, the inhibitory activity of a family of eight heptose phosphate analogues against HldA and HldE was assessed. This evaluation revealed inhibitors with affinities in the low μM range, with the most potent compound showing inhibition constant values of 15.4 μM for HldA and 16.9 μM for HldE. The requirement for a phosphate group at the C-7 position was deemed essential for inhibitory activity, while the presence of a hydroxy anomeric group was found to be beneficial, a phenomenon rationalized through computational modeling. Additionally, the introduction of a single fluorine atom α to the phosphonate moiety conferred a slight advantage for inhibition. These findings suggest that mimicking the structure of <span>d</span>-<em>glycero</em>-β-<span>d</span>-<em>manno</em>-heptose 1,7-bisphosphate, the product of the phosphorylation step in heptose biosynthesis, could be a promising strategy to disrupt this biosynthetic pathway. In terms of the <em>in vivo</em> effects, these heptose phosphate analogues neither demonstrated significant LPS-disrupting effects nor exhibited growth inhibitory activity on their own. Additionally, they did not alter the susceptibility of bacteria to hydrophobic antibiotics. The highly charged nature of these molecules may hinder their ability to penetrate the bacterial cell wall. To overcome this limitation, alternative strategies such as incorporating protecting groups that facilitate their entry and can subsequently be cleaved within the bacterial cytoplasm could be explored.</p></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206824006722","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The growing threat of bacterial resistance to antibiotics has led to the rise of anti-virulence strategies as a promising approach. These strategies aim to disarm bacterial pathogens and improve their clearance by the host immune system. Lipopolysaccharide, a key virulence factor in Gram-negative bacteria, has been identified as a potential target for anti-virulence agents. In this study, we focus on inhibiting HldA and HldE, bacterial enzymes from the heptose biosynthesis pathway, which plays a key role in lipopolysaccharide biosynthesis. We present the synthesis of two fluorinated non-hydrolysable heptose phosphate analogues. Additionally, the inhibitory activity of a family of eight heptose phosphate analogues against HldA and HldE was assessed. This evaluation revealed inhibitors with affinities in the low μM range, with the most potent compound showing inhibition constant values of 15.4 μM for HldA and 16.9 μM for HldE. The requirement for a phosphate group at the C-7 position was deemed essential for inhibitory activity, while the presence of a hydroxy anomeric group was found to be beneficial, a phenomenon rationalized through computational modeling. Additionally, the introduction of a single fluorine atom α to the phosphonate moiety conferred a slight advantage for inhibition. These findings suggest that mimicking the structure of d-glycero-β-d-manno-heptose 1,7-bisphosphate, the product of the phosphorylation step in heptose biosynthesis, could be a promising strategy to disrupt this biosynthetic pathway. In terms of the in vivo effects, these heptose phosphate analogues neither demonstrated significant LPS-disrupting effects nor exhibited growth inhibitory activity on their own. Additionally, they did not alter the susceptibility of bacteria to hydrophobic antibiotics. The highly charged nature of these molecules may hinder their ability to penetrate the bacterial cell wall. To overcome this limitation, alternative strategies such as incorporating protecting groups that facilitate their entry and can subsequently be cleaved within the bacterial cytoplasm could be explored.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.