{"title":"Anisotropy-induced spin parity effects","authors":"Shuntaro Sumita, Akihiro Tanaka, Yusuke Kato","doi":"10.1103/physrevb.110.l100403","DOIUrl":null,"url":null,"abstract":"Spin parity effects refer to those special situations where a dichotomy in the physical behavior of a system arises, solely depending on whether the relevant spin quantum number is integral or half-odd integral. As is the case with the Haldane conjecture in antiferromagnetic spin chains, their pursuit often derives deep insights and invokes new developments in quantum condensed matter physics. Here, we put forth a simple and general scheme for generating such effects in any spatial dimension through the use of anisotropic interactions, and a setup within reasonable reach of state-of-the-art cold-atom implementations. We demonstrate its utility through a detailed analysis of the magnetization behavior of a specific one-dimensional spin chain model, an anisotropic antiferromagnet in a transverse magnetic field, unraveling along the way the quantum origin of finite-size effects observed in the magnetization curve that had previously been noted but not clearly understood.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.l100403","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Spin parity effects refer to those special situations where a dichotomy in the physical behavior of a system arises, solely depending on whether the relevant spin quantum number is integral or half-odd integral. As is the case with the Haldane conjecture in antiferromagnetic spin chains, their pursuit often derives deep insights and invokes new developments in quantum condensed matter physics. Here, we put forth a simple and general scheme for generating such effects in any spatial dimension through the use of anisotropic interactions, and a setup within reasonable reach of state-of-the-art cold-atom implementations. We demonstrate its utility through a detailed analysis of the magnetization behavior of a specific one-dimensional spin chain model, an anisotropic antiferromagnet in a transverse magnetic field, unraveling along the way the quantum origin of finite-size effects observed in the magnetization curve that had previously been noted but not clearly understood.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter