{"title":"Configuration optimization of PV array for stratospheric airship under nonuniform radiation condition","authors":"","doi":"10.1016/j.ast.2024.109550","DOIUrl":null,"url":null,"abstract":"<div><p>The nonuniform solar irradiation on the stratospheric airship surface leads to overlooked mismatch losses in photovoltaic (PV) array. Proper configuration for PV array is crucial but frequently neglected in airship energy system research. In this paper, a mathematical model coupled with the layout of PV array on airship surface, radiation model, electrical model and energy balance model is established. The deployment of PV pack based on the distribution characteristics of solar radiation on airships surface is analyzed. Three maximum power point tracking configurations for the PV array are investigated in detail. The results indicate that mounting PV pack in axial series on stratospheric airships leads to higher power output compared to parallel-connected deployment, PV packs on stratospheric airships exhibit significant output power differences along the circumferential direction and minor differences along the axial direction, the peak of daily maximum output difference ratio is merely 0.4 % between the PV array under the distributed maximum power point tracking (DMPPT) and the partial distributed global maximum point tracking (PDMPPT) configuration, and PDMPPT configuration needs much fewer module, it emerges as the optimal choice for stratospheric airship PV array. This investigation can provide references for the further PV array configuration optimization under nonuniform radiation condition.</p></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824006801","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The nonuniform solar irradiation on the stratospheric airship surface leads to overlooked mismatch losses in photovoltaic (PV) array. Proper configuration for PV array is crucial but frequently neglected in airship energy system research. In this paper, a mathematical model coupled with the layout of PV array on airship surface, radiation model, electrical model and energy balance model is established. The deployment of PV pack based on the distribution characteristics of solar radiation on airships surface is analyzed. Three maximum power point tracking configurations for the PV array are investigated in detail. The results indicate that mounting PV pack in axial series on stratospheric airships leads to higher power output compared to parallel-connected deployment, PV packs on stratospheric airships exhibit significant output power differences along the circumferential direction and minor differences along the axial direction, the peak of daily maximum output difference ratio is merely 0.4 % between the PV array under the distributed maximum power point tracking (DMPPT) and the partial distributed global maximum point tracking (PDMPPT) configuration, and PDMPPT configuration needs much fewer module, it emerges as the optimal choice for stratospheric airship PV array. This investigation can provide references for the further PV array configuration optimization under nonuniform radiation condition.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.