Daniel Valencia;Elena Muñoz España;Mariela Muñoz Añasco
{"title":"Impact of the preprocessing stage on the performance of offline automatic vehicle counting using YOLO","authors":"Daniel Valencia;Elena Muñoz España;Mariela Muñoz Añasco","doi":"10.1109/TLA.2024.10669248","DOIUrl":null,"url":null,"abstract":"Vehicle counting systems detect, classify, and count vehicles with sensors or image processing, providing valuable information for road management. Image processing systems provide detailed information on vehicle flow with adequate lighting conditions and a higher computational cost compared to sensor systems. The image processing systems with higher accuracy require higher computational cost. This feature limits the number of application cases in cities with low technology level. This research analyzes urban vehicle counting using an automatic image processing system using YOLOv5 in the vehicle detection-classification stage and the SORT algorithm in the tracking stage. The study used videos recorded from a pedestrian bridge in Popayan, Colombia, for an exploratory study of the influence of preprocessing operations on the performance of a low-tech vehicle counting system. The study performed a comparative statistical analysis to determine the impact of different settings on system performance. An ANOVA analysis evaluates the incidence of frame cut and reshape on YOLO processing. The results indicate that a 30% cut of the image area prior to YOLO processing produces the lowest weighted average error. In addition, the frame reshape only increases the processing time. The study proposes improvements in the performance of an offline automatic vehicle counting system from the video preprocessing stage.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669248","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669248/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicle counting systems detect, classify, and count vehicles with sensors or image processing, providing valuable information for road management. Image processing systems provide detailed information on vehicle flow with adequate lighting conditions and a higher computational cost compared to sensor systems. The image processing systems with higher accuracy require higher computational cost. This feature limits the number of application cases in cities with low technology level. This research analyzes urban vehicle counting using an automatic image processing system using YOLOv5 in the vehicle detection-classification stage and the SORT algorithm in the tracking stage. The study used videos recorded from a pedestrian bridge in Popayan, Colombia, for an exploratory study of the influence of preprocessing operations on the performance of a low-tech vehicle counting system. The study performed a comparative statistical analysis to determine the impact of different settings on system performance. An ANOVA analysis evaluates the incidence of frame cut and reshape on YOLO processing. The results indicate that a 30% cut of the image area prior to YOLO processing produces the lowest weighted average error. In addition, the frame reshape only increases the processing time. The study proposes improvements in the performance of an offline automatic vehicle counting system from the video preprocessing stage.
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.