Online Minority Cluster-Informed Semi-Supervised Random Vector Functional Link Network for Multi-Mode Intermittent Fault Diagnosis

Wei Li;Pengyu Han;Zeyi Liu;Xiao He;Limin Wang;Tao Zhang
{"title":"Online Minority Cluster-Informed Semi-Supervised Random Vector Functional Link Network for Multi-Mode Intermittent Fault Diagnosis","authors":"Wei Li;Pengyu Han;Zeyi Liu;Xiao He;Limin Wang;Tao Zhang","doi":"10.1109/TICPS.2024.3434788","DOIUrl":null,"url":null,"abstract":"Industrial intermittent fault diagnosis is crucial for maintaining efficient and safe production processes. However, existing methodologies often fail to account for practical sample imbalance constraints encountered in multi-mode scenarios. In this paper, an online minority cluster-informed semi-supervised random vector functional link network, termed OMIS-RVFL, is proposed to tackle these challenges. It incorporates a minority-cluster informed strategy, employing dimensionality reduction and minority prioritization to enhance linear separability of samples in transitional conditions and improve identification of minority instances. Multiple experiments are conducted using the multi-mode Tennessee Eastman process datasets. Experimental results verified that the effectiveness of the proposed OMIS-RVFL.","PeriodicalId":100640,"journal":{"name":"IEEE Transactions on Industrial Cyber-Physical Systems","volume":"2 ","pages":"404-411"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10614118/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial intermittent fault diagnosis is crucial for maintaining efficient and safe production processes. However, existing methodologies often fail to account for practical sample imbalance constraints encountered in multi-mode scenarios. In this paper, an online minority cluster-informed semi-supervised random vector functional link network, termed OMIS-RVFL, is proposed to tackle these challenges. It incorporates a minority-cluster informed strategy, employing dimensionality reduction and minority prioritization to enhance linear separability of samples in transitional conditions and improve identification of minority instances. Multiple experiments are conducted using the multi-mode Tennessee Eastman process datasets. Experimental results verified that the effectiveness of the proposed OMIS-RVFL.
用于多模式间歇性故障诊断的在线少数群组半监督随机向量功能链接网络
工业间歇性故障诊断对于维持高效安全的生产流程至关重要。然而,现有方法往往无法考虑多模式场景中遇到的实际样本不平衡限制。本文提出了一种名为 OMIS-RVFL 的在线少数簇知情半监督随机向量功能链接网络,以应对这些挑战。它采用了少数群体集群知情策略,利用降维和少数群体优先化来增强过渡条件下样本的线性可分性,并改进少数群体实例的识别。使用多模式田纳西伊士曼过程数据集进行了多次实验。实验结果验证了所提出的 OMIS-RVFL 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信