{"title":"Approximation of Classical Two-Phase Flows of Viscous Incompressible Fluids by a Navier–Stokes/Allen–Cahn System","authors":"Helmut Abels, Julian Fischer, Maximilian Moser","doi":"10.1007/s00205-024-02020-9","DOIUrl":null,"url":null,"abstract":"<div><p>We show convergence of the Navier–Stokes/Allen–Cahn system to a classical sharp interface model for the two-phase flow of two viscous incompressible fluids with same viscosities in a smooth bounded domain in two and three space dimensions as long as a smooth solution of the limit system exists. Moreover, we obtain error estimates with the aid of a relative entropy method. Our results hold provided that the mobility <span>\\(m_\\varepsilon >0\\)</span> in the Allen–Cahn equation tends to zero in a subcritical way, i.e., <span>\\(m_\\varepsilon = m_0 \\varepsilon ^\\beta \\)</span> for some <span>\\(\\beta \\in (0,2)\\)</span> and <span>\\(m_0>0\\)</span>. The proof proceeds by showing via a relative entropy argument that the solution to the Navier–Stokes/Allen–Cahn system remains close to the solution of a perturbed version of the two-phase flow problem, augmented by an extra mean curvature flow term <span>\\(m_\\varepsilon H_{\\Gamma _t}\\)</span> in the interface motion. In a second step, it is easy to see that the solution to the perturbed problem is close to the original two-phase flow.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02020-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We show convergence of the Navier–Stokes/Allen–Cahn system to a classical sharp interface model for the two-phase flow of two viscous incompressible fluids with same viscosities in a smooth bounded domain in two and three space dimensions as long as a smooth solution of the limit system exists. Moreover, we obtain error estimates with the aid of a relative entropy method. Our results hold provided that the mobility \(m_\varepsilon >0\) in the Allen–Cahn equation tends to zero in a subcritical way, i.e., \(m_\varepsilon = m_0 \varepsilon ^\beta \) for some \(\beta \in (0,2)\) and \(m_0>0\). The proof proceeds by showing via a relative entropy argument that the solution to the Navier–Stokes/Allen–Cahn system remains close to the solution of a perturbed version of the two-phase flow problem, augmented by an extra mean curvature flow term \(m_\varepsilon H_{\Gamma _t}\) in the interface motion. In a second step, it is easy to see that the solution to the perturbed problem is close to the original two-phase flow.