Approximation of Classical Two-Phase Flows of Viscous Incompressible Fluids by a Navier–Stokes/Allen–Cahn System

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Helmut Abels, Julian Fischer, Maximilian Moser
{"title":"Approximation of Classical Two-Phase Flows of Viscous Incompressible Fluids by a Navier–Stokes/Allen–Cahn System","authors":"Helmut Abels,&nbsp;Julian Fischer,&nbsp;Maximilian Moser","doi":"10.1007/s00205-024-02020-9","DOIUrl":null,"url":null,"abstract":"<div><p>We show convergence of the Navier–Stokes/Allen–Cahn system to a classical sharp interface model for the two-phase flow of two viscous incompressible fluids with same viscosities in a smooth bounded domain in two and three space dimensions as long as a smooth solution of the limit system exists. Moreover, we obtain error estimates with the aid of a relative entropy method. Our results hold provided that the mobility <span>\\(m_\\varepsilon &gt;0\\)</span> in the Allen–Cahn equation tends to zero in a subcritical way, i.e., <span>\\(m_\\varepsilon = m_0 \\varepsilon ^\\beta \\)</span> for some <span>\\(\\beta \\in (0,2)\\)</span> and <span>\\(m_0&gt;0\\)</span>. The proof proceeds by showing via a relative entropy argument that the solution to the Navier–Stokes/Allen–Cahn system remains close to the solution of a perturbed version of the two-phase flow problem, augmented by an extra mean curvature flow term <span>\\(m_\\varepsilon H_{\\Gamma _t}\\)</span> in the interface motion. In a second step, it is easy to see that the solution to the perturbed problem is close to the original two-phase flow.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02020-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We show convergence of the Navier–Stokes/Allen–Cahn system to a classical sharp interface model for the two-phase flow of two viscous incompressible fluids with same viscosities in a smooth bounded domain in two and three space dimensions as long as a smooth solution of the limit system exists. Moreover, we obtain error estimates with the aid of a relative entropy method. Our results hold provided that the mobility \(m_\varepsilon >0\) in the Allen–Cahn equation tends to zero in a subcritical way, i.e., \(m_\varepsilon = m_0 \varepsilon ^\beta \) for some \(\beta \in (0,2)\) and \(m_0>0\). The proof proceeds by showing via a relative entropy argument that the solution to the Navier–Stokes/Allen–Cahn system remains close to the solution of a perturbed version of the two-phase flow problem, augmented by an extra mean curvature flow term \(m_\varepsilon H_{\Gamma _t}\) in the interface motion. In a second step, it is easy to see that the solution to the perturbed problem is close to the original two-phase flow.

纳维-斯托克斯/阿伦-卡恩系统对粘性不可压缩流体经典两相流的近似。
我们展示了纳维-斯托克斯/阿伦-卡恩系统与经典尖锐界面模型的收敛性,该模型适用于具有相同粘度的两种粘性不可压缩流体在二维和三维空间的光滑有界域中的两相流动,只要极限系统的光滑解存在。此外,我们还借助相对熵方法获得了误差估计值。只要 Allen-Cahn 方程中的流动性 m ε > 0 以亚临界方式趋于零,即对于某个 β∈ ( 0 , 2 ) 且 m 0 > 0,m ε = m 0 ε β,我们的结果就成立。证明的方法是通过相对熵论证表明,纳维-斯托克斯/阿伦-卡恩系统的解仍然接近于两相流问题的扰动版本的解,在界面运动中增加了一个额外的平均曲率流动项 m ε H Γ t。第二步,很容易看出扰动问题的解接近于原始两相流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信