{"title":"Characterization of Expression-Based Gene Clusters Gives Insights into Variation in Patient Response to Cancer Therapies.","authors":"Bridget Neary, Peng Qiu","doi":"10.1177/11769351241271560","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transcriptomics can reveal much about cellular activity, and cancer transcriptomics have been useful in investigating tumor cell behaviors. Patterns in transcriptome-wide gene expression can be used to investigate biological mechanisms and pathways that can explain the variability in patient response to cancer therapies.</p><p><strong>Methods: </strong>We identified gene expression patterns related to patient drug response by clustering tumor gene expression data and selecting from the resulting gene clusters those where expression of cluster genes was related to patient survival on specific drugs. We then investigated these gene clusters for biological meaning using several approaches, including identifying common genomic locations and transcription factors whose targets were enriched in these clusters and performing survival analyses to support these candidate transcription factor-drug relationships.</p><p><strong>Results: </strong>We identified gene clusters related to drug-specific survival, and through these, we were able to associate observed variations in patient drug response to specific known biological phenomena. Specifically, our analysis implicated 2 stem cell-related transcription factors, HOXB4 and SALL4, in poor response to temozolomide in brain cancers. In addition, expression of SNRNP70 and its targets were implicated in cetuximab response by 3 different analyses, although the mechanism remains unclear. We also found evidence that 2 cancer-related chromosomal structural changes may impact drug efficacy.</p><p><strong>Conclusion: </strong>In this study, we present the gene clusters identified and the results of our systematic analysis linking drug efficacy to specific transcription factors, which are rich sources of potential mechanistic relationships impacting patient outcomes. We also highlight the most promising of these results, which were supported by multiple analyses and by previous research. We report these findings as promising avenues for independent validation and further research into cancer treatments and patient response.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375686/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351241271560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Transcriptomics can reveal much about cellular activity, and cancer transcriptomics have been useful in investigating tumor cell behaviors. Patterns in transcriptome-wide gene expression can be used to investigate biological mechanisms and pathways that can explain the variability in patient response to cancer therapies.
Methods: We identified gene expression patterns related to patient drug response by clustering tumor gene expression data and selecting from the resulting gene clusters those where expression of cluster genes was related to patient survival on specific drugs. We then investigated these gene clusters for biological meaning using several approaches, including identifying common genomic locations and transcription factors whose targets were enriched in these clusters and performing survival analyses to support these candidate transcription factor-drug relationships.
Results: We identified gene clusters related to drug-specific survival, and through these, we were able to associate observed variations in patient drug response to specific known biological phenomena. Specifically, our analysis implicated 2 stem cell-related transcription factors, HOXB4 and SALL4, in poor response to temozolomide in brain cancers. In addition, expression of SNRNP70 and its targets were implicated in cetuximab response by 3 different analyses, although the mechanism remains unclear. We also found evidence that 2 cancer-related chromosomal structural changes may impact drug efficacy.
Conclusion: In this study, we present the gene clusters identified and the results of our systematic analysis linking drug efficacy to specific transcription factors, which are rich sources of potential mechanistic relationships impacting patient outcomes. We also highlight the most promising of these results, which were supported by multiple analyses and by previous research. We report these findings as promising avenues for independent validation and further research into cancer treatments and patient response.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.