Generative AI in oncological imaging: Revolutionizing cancer detection and diagnosis.

Q2 Medicine
Yashbir Singh, Quincy A Hathaway, Bradley J Erickson
{"title":"Generative AI in oncological imaging: Revolutionizing cancer detection and diagnosis.","authors":"Yashbir Singh, Quincy A Hathaway, Bradley J Erickson","doi":"10.18632/oncotarget.28640","DOIUrl":null,"url":null,"abstract":"<p><p>Generative AI is revolutionizing oncological imaging, enhancing cancer detection and diagnosis. This editorial explores its impact on expanding datasets, improving image quality, and enabling predictive oncology. We discuss ethical considerations and introduce a unique perspective on personalized cancer screening using AI-generated digital twins. This approach could optimize screening protocols, improve early detection, and tailor treatment plans. While challenges remain, generative AI in oncological imaging offers unprecedented opportunities to advance cancer care and improve patient outcomes.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"607-608"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Generative AI is revolutionizing oncological imaging, enhancing cancer detection and diagnosis. This editorial explores its impact on expanding datasets, improving image quality, and enabling predictive oncology. We discuss ethical considerations and introduce a unique perspective on personalized cancer screening using AI-generated digital twins. This approach could optimize screening protocols, improve early detection, and tailor treatment plans. While challenges remain, generative AI in oncological imaging offers unprecedented opportunities to advance cancer care and improve patient outcomes.

肿瘤成像中的生成式人工智能:革命性的癌症检测和诊断。
生成式人工智能正在彻底改变肿瘤成像,提高癌症检测和诊断水平。这篇社论探讨了它对扩大数据集、提高图像质量和实现预测性肿瘤学的影响。我们讨论了伦理方面的考虑因素,并介绍了使用人工智能生成的数字双胞胎进行个性化癌症筛查的独特视角。这种方法可以优化筛查方案、改善早期检测并定制治疗计划。虽然挑战依然存在,但肿瘤成像中的生成式人工智能为推进癌症治疗和改善患者预后提供了前所未有的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信