Delivery of Superoxide Dismutase 3 Gene with Baculoviruses Inhibits TNF-α Triggers Vascular Smooth Muscle Cell Proliferation and Inflammation.

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY
Shoa-Lin Lin, Song-Tay Lee, Shang-En Huang, Tsung-Hsien Chang, Yong-Jian Geng, Erna Sulistyowati, Jwu-Lai Yeh
{"title":"Delivery of Superoxide Dismutase 3 Gene with Baculoviruses Inhibits TNF-α Triggers Vascular Smooth Muscle Cell Proliferation and Inflammation.","authors":"Shoa-Lin Lin, Song-Tay Lee, Shang-En Huang, Tsung-Hsien Chang, Yong-Jian Geng, Erna Sulistyowati, Jwu-Lai Yeh","doi":"10.2174/0115665232308789240823052607","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Superoxide dismutase 3 (SOD3), recognized as a potent free radical scavenger, exhibits antioxidant, anti-inflammatory, and anti-angiogenic properties. However, the molecular mechanisms underlying the protective effects of SOD3 on the vascular smooth muscle cell during atherosclerosis remain unclear.</p><p><strong>Objectives: </strong>This study aimed to investigate the efficacy of the baculovirus expressing SOD3 gene delivery to vascular smooth muscle cells (VSMCs) and investigate whether the overexpression of SOD3 mitigates cell proliferation and migration induced by tumor necrosis factor-α (TNF-α).</p><p><strong>Methods: </strong>A baculoviral vector containing SOD3 cDNA (vAcMBac-CMV-IE-SOD3) was constructed and utilized to deliver the SOD3 gene into primary rat VSMCs. Cells were stimulated with recombinant TNF-α, and then cell proliferation and migration were evaluated using the bromodeoxyuridine and wound healing assay. Western blot was used to verify the expression of cell cycle regulators, cellular mediators, and proliferative biomarkers. Zymography, immunofluorescence staining, and ELISA assay were conducted to assess the expression levels of matrix metalloproteinases.</p><p><strong>Results: </strong>The results demonstrated efficient and non-cytotoxic transduction of vAcMBac- CMV-IE-SOD3 in VSMCs. SOD3 overexpression significantly suppressed cell proliferation and motility by inhibiting cell cycle regulators in TNF-α-induced cells. TNF-α elevated protein levels of phospho-ERK and phospho-Akt were reduced markedly by SOD3-overexpressing. Additionally, SOD3 overexpression attenuated the elevation of MMP-2 and MMP-9, the pro-inflammatory and proliferative biomarkers. Overall, the SOD3 gene delivery exhibited potent anti-proliferation and anti-inflammation effects on TNF-α-induced VSMCs.</p><p><strong>Conclusion: </strong>An effective SOD3 gene delivery using a recombinant baculoviral vector has been successfully established and is useful for overexpression of the SOD gene family. This approach provides new therapeutic strategies in gene therapy against atherosclerosis.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232308789240823052607","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Superoxide dismutase 3 (SOD3), recognized as a potent free radical scavenger, exhibits antioxidant, anti-inflammatory, and anti-angiogenic properties. However, the molecular mechanisms underlying the protective effects of SOD3 on the vascular smooth muscle cell during atherosclerosis remain unclear.

Objectives: This study aimed to investigate the efficacy of the baculovirus expressing SOD3 gene delivery to vascular smooth muscle cells (VSMCs) and investigate whether the overexpression of SOD3 mitigates cell proliferation and migration induced by tumor necrosis factor-α (TNF-α).

Methods: A baculoviral vector containing SOD3 cDNA (vAcMBac-CMV-IE-SOD3) was constructed and utilized to deliver the SOD3 gene into primary rat VSMCs. Cells were stimulated with recombinant TNF-α, and then cell proliferation and migration were evaluated using the bromodeoxyuridine and wound healing assay. Western blot was used to verify the expression of cell cycle regulators, cellular mediators, and proliferative biomarkers. Zymography, immunofluorescence staining, and ELISA assay were conducted to assess the expression levels of matrix metalloproteinases.

Results: The results demonstrated efficient and non-cytotoxic transduction of vAcMBac- CMV-IE-SOD3 in VSMCs. SOD3 overexpression significantly suppressed cell proliferation and motility by inhibiting cell cycle regulators in TNF-α-induced cells. TNF-α elevated protein levels of phospho-ERK and phospho-Akt were reduced markedly by SOD3-overexpressing. Additionally, SOD3 overexpression attenuated the elevation of MMP-2 and MMP-9, the pro-inflammatory and proliferative biomarkers. Overall, the SOD3 gene delivery exhibited potent anti-proliferation and anti-inflammation effects on TNF-α-induced VSMCs.

Conclusion: An effective SOD3 gene delivery using a recombinant baculoviral vector has been successfully established and is useful for overexpression of the SOD gene family. This approach provides new therapeutic strategies in gene therapy against atherosclerosis.

用巴库洛病毒传递超氧化物歧化酶 3 基因可抑制 TNF-α 引发的血管平滑肌细胞增殖和炎症。
背景:超氧化物歧化酶 3(SOD3)被认为是一种有效的自由基清除剂,具有抗氧化、抗炎和抗血管生成的特性。然而,SOD3 在动脉粥样硬化过程中对血管平滑肌细胞的保护作用的分子机制仍不清楚:本研究旨在探讨表达 SOD3 基因的杆状病毒向血管平滑肌细胞(VSMCs)传递 SOD3 基因的有效性,并研究过表达 SOD3 是否能减轻肿瘤坏死因子-α(TNF-α)诱导的细胞增殖和迁移:方法:构建了含有 SOD3 cDNA 的杆状病毒载体(vAcMBac-CMV-IE-SOD3),并将其用于向原代大鼠 VSMCs 运送 SOD3 基因。用重组 TNF-α 刺激细胞,然后用溴脱氧尿苷和伤口愈合试验评估细胞的增殖和迁移。用 Western 印迹法验证细胞周期调节因子、细胞介质和增殖生物标志物的表达。此外,还进行了酶谱分析、免疫荧光染色和酶联免疫吸附试验,以评估基质金属蛋白酶的表达水平:结果表明,vAcMBac- CMV-IE-SOD3 在血管内皮细胞中的转导高效且无毒性。在 TNF-α 诱导的细胞中,SOD3 的过表达通过抑制细胞周期调节因子而显著抑制了细胞的增殖和运动。过量表达 SOD3 能明显降低 TNF-α 诱导的磷酸-ERK 和磷酸-Akt 蛋白水平。此外,SOD3 的过表达还能抑制促炎和增殖生物标志物 MMP-2 和 MMP-9 的升高。总之,SOD3基因递送对TNF-α诱导的血管内皮细胞具有强效的抗增殖和抗炎作用:结论:利用重组杆状病毒载体有效传递 SOD3 基因的方法已经成功建立,并可用于 SOD 基因家族的过表达。这种方法为动脉粥样硬化的基因治疗提供了新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信