{"title":"Delivery of Superoxide Dismutase 3 Gene with Baculoviruses Inhibits TNF-α Triggers Vascular Smooth Muscle Cell Proliferation and Inflammation.","authors":"Shoa-Lin Lin, Song-Tay Lee, Shang-En Huang, Tsung-Hsien Chang, Yong-Jian Geng, Erna Sulistyowati, Jwu-Lai Yeh","doi":"10.2174/0115665232308789240823052607","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Superoxide dismutase 3 (SOD3), recognized as a potent free radical scavenger, exhibits antioxidant, anti-inflammatory, and anti-angiogenic properties. However, the molecular mechanisms underlying the protective effects of SOD3 on the vascular smooth muscle cell during atherosclerosis remain unclear.</p><p><strong>Objectives: </strong>This study aimed to investigate the efficacy of the baculovirus expressing SOD3 gene delivery to vascular smooth muscle cells (VSMCs) and investigate whether the overexpression of SOD3 mitigates cell proliferation and migration induced by tumor necrosis factor-α (TNF-α).</p><p><strong>Methods: </strong>A baculoviral vector containing SOD3 cDNA (vAcMBac-CMV-IE-SOD3) was constructed and utilized to deliver the SOD3 gene into primary rat VSMCs. Cells were stimulated with recombinant TNF-α, and then cell proliferation and migration were evaluated using the bromodeoxyuridine and wound healing assay. Western blot was used to verify the expression of cell cycle regulators, cellular mediators, and proliferative biomarkers. Zymography, immunofluorescence staining, and ELISA assay were conducted to assess the expression levels of matrix metalloproteinases.</p><p><strong>Results: </strong>The results demonstrated efficient and non-cytotoxic transduction of vAcMBac- CMV-IE-SOD3 in VSMCs. SOD3 overexpression significantly suppressed cell proliferation and motility by inhibiting cell cycle regulators in TNF-α-induced cells. TNF-α elevated protein levels of phospho-ERK and phospho-Akt were reduced markedly by SOD3-overexpressing. Additionally, SOD3 overexpression attenuated the elevation of MMP-2 and MMP-9, the pro-inflammatory and proliferative biomarkers. Overall, the SOD3 gene delivery exhibited potent anti-proliferation and anti-inflammation effects on TNF-α-induced VSMCs.</p><p><strong>Conclusion: </strong>An effective SOD3 gene delivery using a recombinant baculoviral vector has been successfully established and is useful for overexpression of the SOD gene family. This approach provides new therapeutic strategies in gene therapy against atherosclerosis.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232308789240823052607","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Superoxide dismutase 3 (SOD3), recognized as a potent free radical scavenger, exhibits antioxidant, anti-inflammatory, and anti-angiogenic properties. However, the molecular mechanisms underlying the protective effects of SOD3 on the vascular smooth muscle cell during atherosclerosis remain unclear.
Objectives: This study aimed to investigate the efficacy of the baculovirus expressing SOD3 gene delivery to vascular smooth muscle cells (VSMCs) and investigate whether the overexpression of SOD3 mitigates cell proliferation and migration induced by tumor necrosis factor-α (TNF-α).
Methods: A baculoviral vector containing SOD3 cDNA (vAcMBac-CMV-IE-SOD3) was constructed and utilized to deliver the SOD3 gene into primary rat VSMCs. Cells were stimulated with recombinant TNF-α, and then cell proliferation and migration were evaluated using the bromodeoxyuridine and wound healing assay. Western blot was used to verify the expression of cell cycle regulators, cellular mediators, and proliferative biomarkers. Zymography, immunofluorescence staining, and ELISA assay were conducted to assess the expression levels of matrix metalloproteinases.
Results: The results demonstrated efficient and non-cytotoxic transduction of vAcMBac- CMV-IE-SOD3 in VSMCs. SOD3 overexpression significantly suppressed cell proliferation and motility by inhibiting cell cycle regulators in TNF-α-induced cells. TNF-α elevated protein levels of phospho-ERK and phospho-Akt were reduced markedly by SOD3-overexpressing. Additionally, SOD3 overexpression attenuated the elevation of MMP-2 and MMP-9, the pro-inflammatory and proliferative biomarkers. Overall, the SOD3 gene delivery exhibited potent anti-proliferation and anti-inflammation effects on TNF-α-induced VSMCs.
Conclusion: An effective SOD3 gene delivery using a recombinant baculoviral vector has been successfully established and is useful for overexpression of the SOD gene family. This approach provides new therapeutic strategies in gene therapy against atherosclerosis.
期刊介绍:
Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases.
Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.