Four Strategies for Whole-Genome Annotation of Transposable Elements and Repeats in Maize.

Christopher W Benson, Pedro Heringer, Shujun Ou
{"title":"Four Strategies for Whole-Genome Annotation of Transposable Elements and Repeats in Maize.","authors":"Christopher W Benson, Pedro Heringer, Shujun Ou","doi":"10.1101/pdb.prot108578","DOIUrl":null,"url":null,"abstract":"<p><p>Transposable elements (TEs) and tandem repeat arrays are ubiquitous components of genomes across all domains of life. Many types of repetitive DNA do not appear to encode for functional proteins, and those that do, typically only code for enzymes involved in their own replication. Nevertheless, repetitive DNA sequences can significantly alter genome structure, and can have a profound impact on an organism's biology at both the molecular and organismal levels. Advances in long-read sequencing technology have enabled the resolution of previously collapsed contigs and scaffolds that are rich in repeats, which has made the accurate annotation of TEs and other repetitive sequences a crucial early step in genome analysis. Here, we provide a detailed tutorial for streamlined annotation of TEs and repeats in the genome of the model plant <i>Zea mays</i> (maize). Maize is ideally suited to illustrate these procedures due to its repeat-rich genome and the volume of publicly available and high-quality genomic resources. We outline four possible approaches for TE and repeat annotation, each aimed at accommodating a different set of scientific interests. Additionally, we demonstrate how to evaluate annotation quality, and provide scripts to help graphically depict TE and repeat landscapes. Although the protocol is tailored for maize, we also offer pointers for researchers working on other systems throughout and expect that these procedures will be broadly applicable to any eukaryotic genome.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transposable elements (TEs) and tandem repeat arrays are ubiquitous components of genomes across all domains of life. Many types of repetitive DNA do not appear to encode for functional proteins, and those that do, typically only code for enzymes involved in their own replication. Nevertheless, repetitive DNA sequences can significantly alter genome structure, and can have a profound impact on an organism's biology at both the molecular and organismal levels. Advances in long-read sequencing technology have enabled the resolution of previously collapsed contigs and scaffolds that are rich in repeats, which has made the accurate annotation of TEs and other repetitive sequences a crucial early step in genome analysis. Here, we provide a detailed tutorial for streamlined annotation of TEs and repeats in the genome of the model plant Zea mays (maize). Maize is ideally suited to illustrate these procedures due to its repeat-rich genome and the volume of publicly available and high-quality genomic resources. We outline four possible approaches for TE and repeat annotation, each aimed at accommodating a different set of scientific interests. Additionally, we demonstrate how to evaluate annotation quality, and provide scripts to help graphically depict TE and repeat landscapes. Although the protocol is tailored for maize, we also offer pointers for researchers working on other systems throughout and expect that these procedures will be broadly applicable to any eukaryotic genome.

玉米转座元件和重复序列全基因组注释的四种策略
可转座元件(Transposable elements,TE)和串联重复阵列是所有生命领域基因组中无处不在的组成部分。许多类型的重复 DNA 似乎并不编码功能性蛋白质,而那些编码功能性蛋白质的重复 DNA 通常只编码参与自身复制的酶。然而,重复 DNA 序列能显著改变基因组结构,并在分子和生物体水平上对生物体的生物学产生深远影响。长线程测序技术的进步使得以前坍塌的等位基因和富含重复序列的支架得以解析,这使得准确注释TE和其他重复序列成为基因组分析中至关重要的第一步。在这里,我们提供了一个详细的教程,用于简化模式植物玉米基因组中 TE 和重复序列的注释。由于玉米的基因组富含重复,而且有大量可公开获得的高质量基因组资源,因此非常适合用来说明这些程序。我们概述了 TE 和重复注释的四种可能方法,每种方法都旨在满足不同的科学兴趣。此外,我们还演示了如何评估注释质量,并提供了脚本来帮助以图形方式描述 TE 和重复的景观。虽然该方案是为玉米量身定制的,但我们也为研究其他系统的研究人员提供了指导,并希望这些程序能广泛适用于任何真核生物基因组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信