Lan-Yun Chang, Ting-Yi Hao, Wei-Jie Wang, Chun-Yu Lin
{"title":"Inference of single-cell network using mutual information for scRNA-seq data analysis.","authors":"Lan-Yun Chang, Ting-Yi Hao, Wei-Jie Wang, Chun-Yu Lin","doi":"10.1186/s12859-024-05895-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With the advance in single-cell RNA sequencing (scRNA-seq) technology, deriving inherent biological system information from expression profiles at a single-cell resolution has become possible. It has been known that network modeling by estimating the associations between genes could better reveal dynamic changes in biological systems. However, accurately constructing a single-cell network (SCN) to capture the network architecture of each cell and further explore cell-to-cell heterogeneity remains challenging.</p><p><strong>Results: </strong>We introduce SINUM, a method for constructing the SIngle-cell Network Using Mutual information, which estimates mutual information between any two genes from scRNA-seq data to determine whether they are dependent or independent in a specific cell. Experiments on various scRNA-seq datasets with different cell numbers based on eight performance indexes (e.g., adjusted rand index and F-measure index) validated the accuracy and robustness of SINUM in cell type identification, superior to the state-of-the-art SCN inference method. Additionally, the SINUM SCNs exhibit high overlap with the human interactome and possess the scale-free property.</p><p><strong>Conclusions: </strong>SINUM presents a view of biological systems at the network level to detect cell-type marker genes/gene pairs and investigate time-dependent changes in gene associations during embryo development. Codes for SINUM are freely available at https://github.com/SysMednet/SINUM .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05895-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: With the advance in single-cell RNA sequencing (scRNA-seq) technology, deriving inherent biological system information from expression profiles at a single-cell resolution has become possible. It has been known that network modeling by estimating the associations between genes could better reveal dynamic changes in biological systems. However, accurately constructing a single-cell network (SCN) to capture the network architecture of each cell and further explore cell-to-cell heterogeneity remains challenging.
Results: We introduce SINUM, a method for constructing the SIngle-cell Network Using Mutual information, which estimates mutual information between any two genes from scRNA-seq data to determine whether they are dependent or independent in a specific cell. Experiments on various scRNA-seq datasets with different cell numbers based on eight performance indexes (e.g., adjusted rand index and F-measure index) validated the accuracy and robustness of SINUM in cell type identification, superior to the state-of-the-art SCN inference method. Additionally, the SINUM SCNs exhibit high overlap with the human interactome and possess the scale-free property.
Conclusions: SINUM presents a view of biological systems at the network level to detect cell-type marker genes/gene pairs and investigate time-dependent changes in gene associations during embryo development. Codes for SINUM are freely available at https://github.com/SysMednet/SINUM .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.