Chileab Redwood-Sawyerr, Geoffrey Howe, Andalucia Evans Theodore, Darren N Nesbeth
{"title":"Genetically Encoded Trensor Circuits Report HeLa Cell Treatment with Polyplexed Plasmid DNA and Small-Molecule Transfection Modulators.","authors":"Chileab Redwood-Sawyerr, Geoffrey Howe, Andalucia Evans Theodore, Darren N Nesbeth","doi":"10.1021/acssynbio.4c00148","DOIUrl":null,"url":null,"abstract":"<p><p>HeLa cell transfection with plasmid DNA (pDNA) is widely used to materialize biologicals and as a preclinical test of nucleic acid-based vaccine efficacy. We sought to genetically encode mammalian transfection sensor (Trensor) circuits and test their utility in HeLa cells for detecting molecules and methods for their propensity to influence transfection. We intended these Trensor circuits to be triggered if their host cell was treated with polyplexed pDNA or certain small-molecule modulators of transfection. We prioritized three promoters, implicated by others in feedback responses as cells import and process foreign material and stably integrated each into the genomes of three different cell lines, each upstream of a green fluorescent protein (GFP) open reading frame within a transgene. All three Trensor circuits showed an increase in their GFP expression when their host HeLa cells were incubated with pDNA and the degraded polyamidoamine dendrimer reagent, SuperFect. We next experimentally demonstrated the modulation of PEI-mediated HeLa cell transient transfection by four different small molecules, with Trichostatin A (TSA) showing the greatest propensity to boost transgene expression. The Trensor circuit based on the <i>TRA2B</i> promoter (Trensor-T) was triggered by incubation with TSA alone and not the other three small molecules. These data suggest that mammalian reporter circuits could enable low-cost, high-throughput screening to identify novel transfection methods and reagents without the need to perform actual transfections requiring costly plasmids or expensive fluorescent labels.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00148","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
HeLa cell transfection with plasmid DNA (pDNA) is widely used to materialize biologicals and as a preclinical test of nucleic acid-based vaccine efficacy. We sought to genetically encode mammalian transfection sensor (Trensor) circuits and test their utility in HeLa cells for detecting molecules and methods for their propensity to influence transfection. We intended these Trensor circuits to be triggered if their host cell was treated with polyplexed pDNA or certain small-molecule modulators of transfection. We prioritized three promoters, implicated by others in feedback responses as cells import and process foreign material and stably integrated each into the genomes of three different cell lines, each upstream of a green fluorescent protein (GFP) open reading frame within a transgene. All three Trensor circuits showed an increase in their GFP expression when their host HeLa cells were incubated with pDNA and the degraded polyamidoamine dendrimer reagent, SuperFect. We next experimentally demonstrated the modulation of PEI-mediated HeLa cell transient transfection by four different small molecules, with Trichostatin A (TSA) showing the greatest propensity to boost transgene expression. The Trensor circuit based on the TRA2B promoter (Trensor-T) was triggered by incubation with TSA alone and not the other three small molecules. These data suggest that mammalian reporter circuits could enable low-cost, high-throughput screening to identify novel transfection methods and reagents without the need to perform actual transfections requiring costly plasmids or expensive fluorescent labels.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.