Signed Barcodes for Multi-parameter Persistence via Rank Decompositions and Rank-Exact Resolutions

IF 2.5 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Magnus Bakke Botnan, Steffen Oppermann, Steve Oudot
{"title":"Signed Barcodes for Multi-parameter Persistence via Rank Decompositions and Rank-Exact Resolutions","authors":"Magnus Bakke Botnan, Steffen Oppermann, Steve Oudot","doi":"10.1007/s10208-024-09672-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce the signed barcode, a new visual representation of the global structure of the rank invariant of a multi-parameter persistence module or, more generally, of a poset representation. Like its unsigned counterpart in one-parameter persistence, the signed barcode decomposes the rank invariant as a <span>\\({\\mathbb {Z}}\\)</span>-linear combination of rank invariants of indicator modules supported on segments in the poset. We develop the theory behind these decompositions, both for the usual rank invariant and for its generalizations, showing under what conditions they exist and are unique. We also show that, like its unsigned counterpart, the signed barcode reflects in part the algebraic structure of the module: specifically, it derives from the terms in the minimal rank-exact resolution of the module, i.e., its minimal projective resolution relative to the class of short exact sequences on which the rank invariant is additive. To complete the picture, we show some experimental results that illustrate the contribution of the signed barcode in the exploration of multi-parameter persistence modules.\n</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"6 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09672-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the signed barcode, a new visual representation of the global structure of the rank invariant of a multi-parameter persistence module or, more generally, of a poset representation. Like its unsigned counterpart in one-parameter persistence, the signed barcode decomposes the rank invariant as a \({\mathbb {Z}}\)-linear combination of rank invariants of indicator modules supported on segments in the poset. We develop the theory behind these decompositions, both for the usual rank invariant and for its generalizations, showing under what conditions they exist and are unique. We also show that, like its unsigned counterpart, the signed barcode reflects in part the algebraic structure of the module: specifically, it derives from the terms in the minimal rank-exact resolution of the module, i.e., its minimal projective resolution relative to the class of short exact sequences on which the rank invariant is additive. To complete the picture, we show some experimental results that illustrate the contribution of the signed barcode in the exploration of multi-parameter persistence modules.

Abstract Image

通过秩分解和秩精确解析实现多参数持久性的签名条形码
在本文中,我们引入了有符号的条形码,它是对多参数持久性模块或更广义地说,poset 表示的秩不变式全局结构的一种新的可视化表示。与单参数持久性中的无符号对应物一样,有符号条形码也将秩不变式分解为支持在正集合中的段上的指标模块的秩不变式的线性组合({\mathbb {Z}}\ )。我们为通常的秩不变式及其广义分解发展了这些分解背后的理论,证明了它们在什么条件下存在并且是唯一的。我们还证明,和无符号条码一样,有符号条码在一定程度上反映了模块的代数结构:具体地说,它源于模块的最小秩精确解析中的项,即模块相对于短精确序列类的最小投影解析,在该类上,秩不变式是相加的。为了更全面地说明问题,我们展示了一些实验结果,这些结果说明了有符号条形码在探索多参数持久性模块方面的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信